<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.26</td>
<td>Isolates</td>
<td>283</td>
</tr>
<tr>
<td>4.27</td>
<td>Isomorphism</td>
<td>284</td>
</tr>
<tr>
<td>4.28</td>
<td>Link Analysis</td>
<td>296</td>
</tr>
<tr>
<td>4.29</td>
<td>Link Prediction</td>
<td>303</td>
</tr>
<tr>
<td>4.30</td>
<td>Matching</td>
<td>309</td>
</tr>
<tr>
<td>4.31</td>
<td>Minors</td>
<td>310</td>
</tr>
<tr>
<td>4.32</td>
<td>Maximal independent set</td>
<td>314</td>
</tr>
<tr>
<td>4.33</td>
<td>Minimum Spanning Tree</td>
<td>314</td>
</tr>
<tr>
<td>4.34</td>
<td>Operators</td>
<td>316</td>
</tr>
<tr>
<td>4.35</td>
<td>Rich Club</td>
<td>325</td>
</tr>
<tr>
<td>4.36</td>
<td>Shortest Paths</td>
<td>326</td>
</tr>
<tr>
<td>4.37</td>
<td>Simple Paths</td>
<td>344</td>
</tr>
<tr>
<td>4.38</td>
<td>Swap</td>
<td>346</td>
</tr>
<tr>
<td>4.39</td>
<td>Traversal</td>
<td>347</td>
</tr>
<tr>
<td>4.40</td>
<td>Tree</td>
<td>355</td>
</tr>
<tr>
<td>4.41</td>
<td>Triads</td>
<td>360</td>
</tr>
<tr>
<td>4.42</td>
<td>Vitality</td>
<td>361</td>
</tr>
<tr>
<td>5</td>
<td>Functions</td>
<td>363</td>
</tr>
<tr>
<td>5.1</td>
<td>Graph</td>
<td>363</td>
</tr>
<tr>
<td>5.2</td>
<td>Nodes</td>
<td>364</td>
</tr>
<tr>
<td>5.3</td>
<td>Edges</td>
<td>366</td>
</tr>
<tr>
<td>5.4</td>
<td>Attributes</td>
<td>367</td>
</tr>
<tr>
<td>5.5</td>
<td>Freezing graph structure</td>
<td>369</td>
</tr>
<tr>
<td>6</td>
<td>Graph generators</td>
<td>371</td>
</tr>
<tr>
<td>6.1</td>
<td>Atlas</td>
<td>371</td>
</tr>
<tr>
<td>6.2</td>
<td>Classic</td>
<td>371</td>
</tr>
<tr>
<td>6.3</td>
<td>Expanders</td>
<td>376</td>
</tr>
<tr>
<td>6.4</td>
<td>Small</td>
<td>377</td>
</tr>
<tr>
<td>6.5</td>
<td>Random Graphs</td>
<td>381</td>
</tr>
<tr>
<td>6.6</td>
<td>Degree Sequence</td>
<td>389</td>
</tr>
<tr>
<td>6.7</td>
<td>Random Clustered</td>
<td>395</td>
</tr>
<tr>
<td>6.8</td>
<td>Directed</td>
<td>396</td>
</tr>
<tr>
<td>6.9</td>
<td>Geometric</td>
<td>399</td>
</tr>
<tr>
<td>6.10</td>
<td>Line Graph</td>
<td>402</td>
</tr>
<tr>
<td>6.11</td>
<td>Ego Graph</td>
<td>403</td>
</tr>
<tr>
<td>6.12</td>
<td>Stochastic</td>
<td>404</td>
</tr>
<tr>
<td>6.13</td>
<td>Intersection</td>
<td>405</td>
</tr>
<tr>
<td>6.14</td>
<td>Social Networks</td>
<td>406</td>
</tr>
<tr>
<td>6.15</td>
<td>Community</td>
<td>407</td>
</tr>
<tr>
<td>6.16</td>
<td>Non Isomorphic Trees</td>
<td>411</td>
</tr>
<tr>
<td>7</td>
<td>Linear algebra</td>
<td>413</td>
</tr>
<tr>
<td>7.1</td>
<td>Graph Matrix</td>
<td>413</td>
</tr>
<tr>
<td>7.2</td>
<td>Laplacian Matrix</td>
<td>414</td>
</tr>
<tr>
<td>7.3</td>
<td>Spectrum</td>
<td>417</td>
</tr>
<tr>
<td>7.4</td>
<td>Algebraic Connectivity</td>
<td>418</td>
</tr>
<tr>
<td>7.5</td>
<td>Attribute Matrices</td>
<td>420</td>
</tr>
<tr>
<td>8</td>
<td>Converting to and from other data formats</td>
<td>425</td>
</tr>
<tr>
<td>8.1</td>
<td>To NetworkX Graph</td>
<td>425</td>
</tr>
<tr>
<td>8.2</td>
<td>Dictionaries</td>
<td>426</td>
</tr>
<tr>
<td>8.3</td>
<td>Lists</td>
<td>426</td>
</tr>
<tr>
<td>8.4</td>
<td>Numpy</td>
<td>428</td>
</tr>
</tbody>
</table>
Table of Contents

8.5 Scipy ... 432
8.6 Pandas ... 434

9 **Reading and writing graphs** 437
 9.1 Adjacency List .. 437
 9.2 Multiline Adjacency List 440
 9.3 Edge List .. 444
 9.4 GEXF .. 450
 9.5 GML ... 452
 9.6 Pickle .. 456
 9.7 GraphML ... 457
 9.8 JSON .. 460
 9.9 LEDA ... 464
 9.10 YAML .. 465
 9.11 SparseGraph6 468
 9.12 Pajek ... 473
 9.13 GIS Shapefile 475

10 **Drawing** 477
 10.1 Matplotlib .. 477
 10.2 Graphviz AGraph (dot) 485
 10.3 Graphviz with pydot 487
 10.4 Graph Layout 489

11 **Exceptions** 493
 11.1 Exceptions .. 493

12 **Utilities** 495
 12.1 Helper Functions 495
 12.2 Data Structures and Algorithms 496
 12.3 Random Sequence Generators 496
 12.4 Decorators ... 498
 12.5 Cuthill-McKee Ordering 499
 12.6 Context Managers 501

13 **License** 503

14 **Citing** 505

15 **Credits** 507
 15.1 Contributions 507
 15.2 Support .. 509

16 **Glossary** 511

Python Module Index 513

Index 517
NetworkX is a Python language software package for the creation, manipulation, and study of the structure, dynamics, and function of complex networks.

With NetworkX you can load and store networks in standard and nonstandard data formats, generate many types of random and classic networks, analyze network structure, build network models, design new network algorithms, draw networks, and much more.

1.1 Who uses NetworkX?

The potential audience for NetworkX includes mathematicians, physicists, biologists, computer scientists, and social scientists. Good reviews of the state-of-the-art in the science of complex networks are presented in Albert and Barabási [BA02], Newman [Newman03], and Dorogovtsev and Mendes [DM03]. See also the classic texts [Bollobas01], [Diestel97] and [West01] for graph theoretic results and terminology. For basic graph algorithms, we recommend the texts of Sedgewick, e.g. [Sedgewick01] and [Sedgewick02] and the survey of Brandes and Erlebach [BE05].

1.2 Goals

NetworkX is intended to provide

- tools for the study of the structure and dynamics of social, biological, and infrastructure networks,
- a standard programming interface and graph implementation that is suitable for many applications,
- a rapid development environment for collaborative, multidisciplinary projects,
- an interface to existing numerical algorithms and code written in C, C++, and FORTRAN,
- the ability to painlessly slurp in large nonstandard data sets.

1.3 The Python programming language

Python is a powerful programming language that allows simple and flexible representations of networks, and clear and concise expressions of network algorithms (and other algorithms too). Python has a vibrant and growing ecosystem of packages that NetworkX uses to provide more features such as numerical linear algebra and drawing. In addition Python is also an excellent “glue” language for putting together pieces of software from other languages which allows reuse of legacy code and engineering of high-performance algorithms [Langtangen04].

Equally important, Python is free, well-supported, and a joy to use.
In order to make the most out of NetworkX you will want to know how to write basic programs in Python. Among the many guides to Python, we recommend the documentation at http://www.python.org and the text by Alex Martelli [Martelli03].

1.4 Free software

NetworkX is free software; you can redistribute it and/or modify it under the terms of the BSD License. We welcome contributions from the community. Information on NetworkX development is found at the NetworkX Developer Zone at Github https://github.com/networkx/networkx

1.5 History

NetworkX was born in May 2002. The original version was designed and written by Aric Hagberg, Dan Schult, and Pieter Swart in 2002 and 2003. The first public release was in April 2005.

Many people have contributed to the success of NetworkX. Some of the contributors are listed in the credits.

1.5.1 What Next

• A Brief Tour
• Installing
• Reference
• Examples
The structure of NetworkX can be seen by the organization of its source code. The package provides classes for graph objects, generators to create standard graphs, IO routines for reading in existing datasets, algorithms to analyse the resulting networks and some basic drawing tools.

Most of the NetworkX API is provided by functions which take a graph object as an argument. Methods of the graph object are limited to basic manipulation and reporting. This provides modularity of code and documentation. It also makes it easier for newcomers to learn about the package in stages. The source code for each module is meant to be easy to read and reading this Python code is actually a good way to learn more about network algorithms, but we have put a lot of effort into making the documentation sufficient and friendly. If you have suggestions or questions please contact us by joining the NetworkX Google group.

Classes are named using CamelCase (capital letters at the start of each word). functions, methods and variable names are lower_case_underscore (lowercase with an underscore representing a space between words).

2.1 NetworkX Basics

After starting Python, import the networkx module with (the recommended way)

```python
>>> import networkx as nx
```

To save repetition, in the documentation we assume that NetworkX has been imported this way.

If importing networkx fails, it means that Python cannot find the installed module. Check your installation and your PYTHONPATH.

The following basic graph types are provided as Python classes:

- **Graph** This class implements an undirected graph. It ignores multiple edges between two nodes. It does allow self-loop edges between a node and itself.
- **DiGraph** Directed graphs, that is, graphs with directed edges. Operations common to directed graphs, (a subclass of Graph).
- **MultiGraph** A flexible graph class that allows multiple undirected edges between pairs of nodes. The additional flexibility leads to some degradation in performance, though usually not significant.
- **MultiDiGraph** A directed version of a MultiGraph.

Empty graph-like objects are created with

```python
>>> G=nx.Graph()
>>> G=nx.DiGraph()
>>> G=nx.MultiGraph()
>>> G=nx.MultiDiGraph()
```
All graph classes allow any *hashable* object as a node. Hashable objects include strings, tuples, integers, and more. Arbitrary edge attributes such as weights and labels can be associated with an edge.

The graph internal data structures are based on an adjacency list representation and implemented using Python *dictionary* data structures. The graph adjacency structure is implemented as a Python dictionary of dictionaries; the outer dictionary is keyed by nodes to values that are themselves dictionaries keyed by neighboring node to the edge attributes associated with that edge. This “dict-of-dicts” structure allows fast addition, deletion, and lookup of nodes and neighbors in large graphs. The underlying data structure is accessed directly by methods (the programming interface “API”) in the class definitions. All functions, on the other hand, manipulate graph-like objects solely via those API methods and not by acting directly on the data structure. This design allows for possible replacement of the ‘dicts-of-dicts’-based data structure with an alternative data structure that implements the same methods.

2.1.1 Graphs

The first choice to be made when using NetworkX is what type of graph object to use. A graph (network) is a collection of nodes together with a collection of edges that are pairs of nodes. Attributes are often associated with nodes and/or edges. NetworkX graph objects come in different flavors depending on two main properties of the network:

- **Directed:** Are the edges *directed*? Does the order of the edge pairs \((u,v)\) matter? A directed graph is specified by the “Di” prefix in the class name, e.g. DiGraph(). We make this distinction because many classical graph properties are defined differently for directed graphs.

- **Multi-edges:** Are multiple edges allowed between each pair of nodes? As you might imagine, multiple edges requires a different data structure, though tricky users could design edge data objects to support this functionality. We provide a standard data structure and interface for this type of graph using the prefix “Multi”, e.g. MultiGraph().

The basic graph classes are named: Graph, DiGraph, MultiGraph, and MultiDiGraph

2.2 Nodes and Edges

The next choice you have to make when specifying a graph is what kinds of nodes and edges to use.

If the topology of the network is all you care about then using integers or strings as the nodes makes sense and you need not worry about edge data. If you have a data structure already in place to describe nodes you can simply use that structure as your nodes provided it is *hashable*. If it is not hashable you can use a unique identifier to represent the node and assign the data as a *node attribute*.

Edges often have data associated with them. Arbitrary data can be associated with edges as an *edge attribute*. If the data is numeric and the intent is to represent a *weighted* graph then use the ‘weight’ keyword for the attribute. Some of the graph algorithms, such as Dijkstra’s shortest path algorithm, use this attribute name to get the weight for each edge.

Other attributes can be assigned to an edge by using keyword/value pairs when adding edges. You can use any keyword except ‘weight’ to name your attribute and can then easily query the edge data by that attribute keyword.

Once you’ve decided how to encode the nodes and edges, and whether you have an undirected/directed graph with or without multiedges you are ready to build your network.

2.2.1 Graph Creation

NetworkX graph objects can be created in one of three ways:

- **Graph generators** – standard algorithms to create network topologies.
- **Importing data** from pre-existing (usually file) sources.
Adding edges and nodes explicitly.

Explicit addition and removal of nodes/edges is the easiest to describe. Each graph object supplies methods to manipulate the graph. For example,

```python
>>> import networkx as nx

>>> G=nx.Graph()

>>> G.add_edge(1,2)  # default edge data=1

>>> G.add_edge(2,3,weight=0.9)  # specify edge data

Edge attributes can be anything:

```python
>>> import math

>>> G.add_edge('y','x',function=math.cos)

>>> G.add_node(math.cos) # any hashable can be a node

You can add many edges at one time:

```python
>>> elist=[('a','b',5.0),('b','c',3.0),('a','c',1.0),('c','d',7.3)]

>>> G.add_weighted_edges_from(elist)
```

See the tutorial/index for more examples.

Some basic graph operations such as union and intersection are described in the Operators module documentation.

Graph generators such as binomial_graph and powerlaw_graph are provided in the Graph generators subpackage.

For importing network data from formats such as GML, GraphML, edge list text files see the Reading and writing graphs subpackage.

2.2.2 Graph Reporting

Class methods are used for the basic reporting functions neighbors, edges and degree. Reporting of lists is often needed only to iterate through that list so we supply iterator versions of many property reporting methods. For example edges() and nodes() have corresponding methods edges_iter() and nodes_iter(). Using these methods when you can will save memory and often time as well.

The basic graph relationship of an edge can be obtained in two basic ways. One can look for neighbors of a node or one can look for edges incident to a node. We jokingly refer to people who focus on nodes/neighbors as node-centric and people who focus on edges as edge-centric. The designers of NetworkX tend to be node-centric and view edges as a relationship between nodes. You can see this by our avoidance of notation like G[u,v] in favor of G[u][v]. Most data structures for sparse graphs are essentially adjacency lists and so fit this perspective. In the end, of course, it doesn’t really matter which way you examine the graph. G.edges() removes duplicate representations of each edge while G.neighbors(n) or G[n] is slightly faster but doesn’t remove duplicates.

Any properties that are more complicated than edges, neighbors and degree are provided by functions. For example nx.triangles(G,n) gives the number of triangles which include node n as a vertex. These functions are grouped in the code and documentation under the term algorithms.

2.2.3 Algorithms

A number of graph algorithms are provided with NetworkX. These include shortest path, and breadth first search (see traversal), clustering and isomorphism algorithms and others. There are many that we have not developed yet too. If you implement a graph algorithm that might be useful for others please let us know through the NetworkX Google group or the Github Developer Zone.

As an example here is code to use Dijkstra’s algorithm to find the shortest weighted path:
2.2.4 Drawing

While NetworkX is not designed as a network layout tool, we provide a simple interface to drawing packages and some simple layout algorithms. We interface to the excellent Graphviz layout tools like dot and neato with the (suggested) pygraphviz package or the pydot interface. Drawing can be done using external programs or the Matplotlib Python package. Interactive GUI interfaces are possible though not provided. The drawing tools are provided in the module `drawing`.

The basic drawing functions essentially place the nodes on a scatterplot using the positions in a dictionary or computed with a layout function. The edges are then lines between those dots.

```python
>>> G=nx.cubical_graph()
>>> nx.draw(G)
# default spring_layout
>>> nx.draw(G,pos=nx.spectral_layout(G), nodecolor='r',edge_color='b')
```

See the examples for more ideas.

2.2.5 Data Structure

NetworkX uses a “dictionary of dictionaries of dictionaries” as the basic network data structure. This allows fast lookup with reasonable storage for large sparse networks. The keys are nodes so `G[u]` returns an adjacency dictionary keyed by neighbor to the edge attribute dictionary. The expression `G[u][v]` returns the edge attribute dictionary itself. A dictionary of lists would have also been possible, but not allowed fast edge detection nor convenient storage of edge data.

Advantages of dict-of-dicts-of-dicts data structure:

- Find edges and remove edges with two dictionary look-ups.
- Prefer to “lists” because of fast lookup with sparse storage.
- Prefer to “sets” since data can be attached to edge.
- `G[u][v]` returns the edge attribute dictionary.
- `n in G` tests if node `n` is in graph `G`.
- `for n in G:` iterates through the graph.
- `for nbr in G[n]:` iterates through neighbors.

As an example, here is a representation of an undirected graph with the edges (‘A’,’B’), (’B’,’C’)

```python
>>> G=nx.Graph()
>>> G.add_edge('A','B')
>>> G.add_edge('B','C')
>>> print(G.adj)
{'A': {'B': {}}, 'C': {'B': {}}, 'B': {'A': {}, 'C': {}}}
```

The data structure gets morphed slightly for each base graph class. For DiGraph two dict-of-dicts-of-dicts structures are provided, one for successors and one for predecessors. For MultiGraph/MultiDiGraph we use a dict-of-dicts-of-
dicts-of-dicts where the third dictionary is keyed by an edge key identifier to the fourth dictionary which contains the edge attributes for that edge between the two nodes.

Graphs use a dictionary of attributes for each edge. We use a dict-of-dicts-of-dicts data structure with the inner dictionary storing “name-value” relationships for that edge.

```python
>>> G=nx.Graph()
>>> G.add_edge(1,2,color='red',weight=0.84,size=300)
>>> print(G[1][2]['size'])
300
```

1 “It’s dictionaries all the way down.”
NetworkX provides data structures and methods for storing graphs.

All NetworkX graph classes allow (hashable) Python objects as nodes, and any Python object can be assigned as an edge attribute.

The choice of graph class depends on the structure of the graph you want to represent.

3.1 Which graph class should I use?

<table>
<thead>
<tr>
<th>Graph Type</th>
<th>NetworkX Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undirected Simple</td>
<td>Graph</td>
</tr>
<tr>
<td>Directed Simple</td>
<td>DiGraph</td>
</tr>
<tr>
<td>With Self-loops</td>
<td>Graph, DiGraph</td>
</tr>
<tr>
<td>With Parallel edges</td>
<td>MultiGraph, MultiDiGraph</td>
</tr>
</tbody>
</table>

3.2 Basic graph types

3.2.1 Graph – Undirected graphs with self loops

Overview

Graph *(data=None, **attr)*

Base class for undirected graphs.

A Graph stores nodes and edges with optional data, or attributes.

Graphs hold undirected edges. Self loops are allowed but multiple (parallel) edges are not.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters

- **data** *(input graph)* – Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

- **attr** *(keyword arguments, optional (default= no attributes))* – Attributes to add to graph as key=value pairs.
See also:

DiGraph(), MultiGraph(), MultiDiGraph()

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

```python
>>> G = nx.Graph()
```

G can be grown in several ways.

Nodes:

Add one node at a time:

```python
>>> G.add_node(1)
```

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

```python
>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)
```

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph.

```python
>>> G.add_node(H)
```

Edges:

G can also be grown by adding edges.

Add one edge,

```python
>>> G.add_edge(1, 2)
```

a list of edges,

```python
>>> G.add_edges_from([(1,2),(1,3)])
```

or a collection of edges,

```python
>>> G.add_edges_from(H.edges())
```

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist.

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively.

```python
>>> G = nx.Graph(day="Friday")
>>> G.graph
{'day': 'Friday'}
```

Add node attributes using add_node(), add_nodes_from() or G.node
Warning: adding a node to G.node does not add it to the graph.
Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

Shortcuts:
Many common graph features allow python syntax to speed reporting.

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient.

Reporting:
Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):
The Graph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency lists keyed by node. The next dict (adjlist) represents the adjacency list and holds edge data keyed by neighbor. The inner dict (edge_attr) represents the edge data and holds edge attribute values keyed by attribute names.

Each of these three dicts can be replaced by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph.
class by changing the class() variable holding the factory for that dict-like structure. The variable names are
node_dict_factory, adjlist_dict_factory and edge_attr_dict_factory.

node_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict in the
data structure that holds adjacency lists keyed by node. It should require no arguments and return a dict-like
object.

adjlist_dict_factory [function, (default: dict)] Factory function to be used to create the adjacency list dict
which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object.

edge_attr_dict_factory [function, (default: dict)] Factory function to be used to create the edge attribute dict
which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like
object.

Examples

Create a graph object that tracks the order nodes are added.

```python
>>> from collections import OrderedDict
>>> class OrderedNodeGraph(nx.Graph):
...    node_dict_factory=OrderedDict
...    G=OrderedNodeGraph()
...    G.add_nodes_from( {2,1} )
...    G.nodes()
[2, 1]
...    G.add_edges_from( {(2,2), (2,1), (1,1)} )
...    G.edges()
[(2, 2), (2, 1), (1, 1)]
```

Create a graph object that tracks the order nodes are added and for each node track the order that neighbors are
added.

```python
>>> class OrderedGraph(nx.Graph):
...    node_dict_factory = OrderedDict
...    adjlist_dict_factory = OrderedDict
...    G = OrderedGraph()
...    G.add_nodes_from( {2,1} )
...    G.nodes()
[2, 1]
...    G.add_edges_from( {(2,2), (2,1), (1,1)} )
...    G.edges()
[(2, 2), (2, 1), (1, 1)]
```

Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all
edges. This reduces the memory used, but you lose edge attributes.

```python
>>> class ThinGraph(nx.Graph):
...    all_edge_dict = {'weight': 1}
...    def single_edge_dict(self):
...        return self.all_edge_dict
...    edge_attr_dict_factory = single_edge_dict
...    G = ThinGraph()
...    G.add_edge(2,1)
...    G.add_edge(2,2)
...    G[2][1] is G[2][2]
True
```
Adding and removing nodes and edges

```
Graph.__init__((data]) Initialize a graph with edges, name, graph attributes.
Graph.add_node(n[, attr_dict]) Add a single node n and update node attributes.
Graph.add_nodes_from(nodes, **attr) Add multiple nodes.
Graph.remove_node(n) Remove node n.
Graph.remove_nodes_from(nodes) Remove multiple nodes.
Graph.add_edge(u, v[, attr_dict]) Add an edge between u and v.
Graph.add_edges_from( ebunch[, attr_dict]) Add all the edges in ebunch.
Graph.add_weighted_edges_from( ebunch[, weight]) Add all the edges in ebunch as weighted edges with specified weights.
Graph.remove_edge(u, v) Remove the edge between u and v.
Graph.remove_edges_from(ebunch) Remove all edges specified in ebunch.
Graph.add_star(nodes, **attr) Add a star.
Graph.add_path(nodes, **attr) Add a path.
Graph.add_cycle(nodes, **attr) Add a cycle.
Graph.clear() Remove all nodes and edges from the graph.
```

__init__

```
Graph.__init__((data=None, **attr))

Initialize a graph with edges, name, graph attributes.

Parameters

- **data**(input graph) – Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
- **name**(string, optional (default='')) – An optional name for the graph.
- **attr**(keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also:

convert()
```

Examples

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1,2),(2,3),(3,4)]  # list of edges
>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G=nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}
```

3.2. Basic graph types 13
add_node

Graph.add_node(n, attr_dict=None, **attr)
Add a single node n and update node attributes.

Parameters

- **n** (node) – A node can be any hashable Python object except None.
- **attr_dict** (dictionary, optional (default= no attributes)) – Dictionary of node attributes. Key/value pairs will update existing data associated with the node.
- **attr** (keyword arguments, optional) – Set or change attributes using key=value.

See also:

add_nodes_from()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3
```

Use keywords set/change node attributes:

```python
>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))
```

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn’t change on mutables.

add_nodes_from

Graph.add_nodes_from(nodes, **attr)
Add multiple nodes.

Parameters

- **nodes** (iterable container) – A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict.
- **attr** (keyword arguments, optional (default= no attributes)) – Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally.

See also:

add_node()
Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1), (1,2), (2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(), key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']
Use keywords to update specific node attributes for every node.

```python
>>> G.add_nodes_from([1, 2], size=10)
>>> G.add_nodes_from([3, 4], weight=0.4)
Use (node, attrdict) tuples to update attributes for specific nodes.

```python
>>> G.add_nodes_from([(1, dict(size=11)), (2, {'color': 'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11
```

`remove_node`

`Graph.remove_node(n)`

Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.

Parameters

- `n (node)` – A node in the graph

Raises

- `-------`

- `NetworkXError` – If n is not in the graph.

See also:

`remove_nodes_from()`

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]
```

3.2. Basic graph types
remove_nodes_from

Graph.remove_nodes_from(nodes)
Remove multiple nodes.

Parameters nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.

See also:
remove_node()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]
```

add_edge

Graph.add_edge(u, v, attr_dict=None, **attr)
Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below.

Parameters

- **u, v (nodes)** – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
- **attr_dict (dictionary, optional (default= no attributes))** – Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge.
- **attr (keyword arguments, optional)** – Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

add_edges_from() add a collection of edges

Notes

Adding an edge that already exists updates the edge data.

Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to a keyword which by default is ‘weight’.
Examples

The following all add the edge e=(1,2) to graph G:

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2)  # explicit two-node form
>>> G.add_edge(*e)  # single edge as tuple of two nodes
>>> G.add_edges_from( [(1,2)] )  # add edges from iterable container
```

Associate data to edges using keywords:

```python
>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
```

add_edges_from

```python
Graph.add_edges_from(ebunch, attr_dict=None, **attr)
```

Add all the edges in ebunch.

Parameters

- **ebunch** (container of edges) – Each edge given in the container will be added to the graph. The edges must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing edge data.
- **attr_dict** (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge.
- **attr** (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

- **add_edge()** add a single edge
- **add_weighted_edges_from()** convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in edges take precedence over attributes specified generally.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)])  # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e)  # Add the path graph 0-1-2-3
```

Associate data to edges:

```python
>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')
```
add_weighted_edges_from

Graph.add_weighted_edges_from(ebunch, weight='weight', **attr)
Add all the edges in ebunch as weighted edges with specified weights.

Parameters

- ebunch (container of edges) – Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number.
- weight (string, optional (default= 'weight')) – The attribute name for the edge weights to be added.
- attr (keyword arguments, optional (default= no attributes)) – Edge attributes to add/update for all edges.

See also:

add_edge() add a single edge
add_edges_from() add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from(((0,1,3.0),(1,2,7.5)))

remove_edge

Graph.remove_edge(u, v)
Remove the edge between u and v.

Parameters u, v (nodes) – Remove the edge between nodes u and v.

Raises NetworkXError – If there is not an edge between u and v.

See also:

remove_edges_from() remove a collection of edges

Examples

>>> G = nx.Graph() # or DiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
>>> e = (2,3,{'weight':7}) # an edge with attribute data
>>> G.remove_edge(*e[:2]) # select first part of edge tuple
remove_edges_from

Graph.remove_edges_from(ebunch)
Remove all edges specified in ebunch.

Parameters ebunch (list or container of edge tuples) – Each edge given in the list or container will
be removed from the graph. The edges can be:
• 2-tuples (u,v) edge between u and v.
• 3-tuples (u,v,k) where k is ignored.

See also:
remove_edge() remove a single edge

Notes
Will fail silently if an edge in ebunch is not in the graph.

Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)
```

add_star

Graph.add_star(nodes, **attr)
Add a star.
The first node in nodes is the middle of the star. It is connected to all other nodes.

Parameters
• nodes (iterable container) – A container of nodes.
• attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every
 edge in star.

See also:
add_path(), add_cycle()

Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)
```
add_path

Graph.add_path(nodes, **attr)
Add a path.

Parameters

- nodes (iterable container) – A container of nodes. A path will be constructed from the
 nodes (in order) and added to the graph.

- attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every
 edge in path.

See also:

add_star(), add_cycle()

Examples

```python
>>> G=nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)
```

add_cycle

Graph.add_cycle(nodes, **attr)
Add a cycle.

Parameters

- nodes (iterable container) – A container of nodes. A cycle will be constructed from the
 nodes (in order) and added to the graph.

- attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every
 edge in cycle.

See also:

add_path(), add_star()

Examples

```python
>>> G=nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)
```

clear

Graph.clear()
Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.
Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]
```

Iterating over nodes and edges

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Graph.nodes([data])</code></td>
<td>Return a list of the nodes in the graph.</td>
</tr>
<tr>
<td><code>Graph.nodes_iter([data])</code></td>
<td>Return an iterator over the nodes.</td>
</tr>
<tr>
<td><code>Graph.__iter__()</code></td>
<td>Iterate over the nodes.</td>
</tr>
<tr>
<td><code>Graph.edges([nbunch, data, default])</code></td>
<td>Return a list of edges.</td>
</tr>
<tr>
<td><code>Graph.edges_iter([nbunch, data, default])</code></td>
<td>Return an iterator over the edges.</td>
</tr>
<tr>
<td><code>Graph.get_edge_data(u, v[, default])</code></td>
<td>Return the attribute dictionary associated with edge (u,v).</td>
</tr>
<tr>
<td><code>Graph.neighbors(n)</code></td>
<td>Return a list of the nodes connected to the node n.</td>
</tr>
<tr>
<td><code>Graph.neighbors_iter(n)</code></td>
<td>Return an iterator over all neighbors of node n.</td>
</tr>
<tr>
<td><code>Graph._getitem__(n)</code></td>
<td>Return a dict of neighbors of node n.</td>
</tr>
<tr>
<td><code>Graph.adjacency_list()</code></td>
<td>Return an adjacency list representation of the graph.</td>
</tr>
<tr>
<td><code>Graph.adjacency_iter()</code></td>
<td>Return an iterator of (node, adjacency dict) tuples for all nodes.</td>
</tr>
<tr>
<td><code>Graph.nbunch_iter([nbunch])</code></td>
<td>Return an iterator of nodes contained in nbunch that are also in the graph.</td>
</tr>
</tbody>
</table>

nodes

`Graph.nodes(data=False)`
Return a list of the nodes in the graph.

Parameters **data** (boolean, optional (default=False)) – If False return a list of nodes. If True return a two-tuple of node and node data dictionary

Returns **nlist** – A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).

Return type **list**

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]
```

3.2. Basic graph types
networkx

nodes_iter

Graph.nodes_iter(data=False)

Return an iterator over the nodes.

Parameters

data (boolean, optional (default=False)) – If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary

Returns

niter – An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary)

Return type

iterator

Notes

If the node data is not required it is simpler and equivalent to use the expression ‘for n in G’.

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
```

Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> [d for n,d in G.nodes_iter(data=True)]
[['{}', '{}', '{}']]
```

__iter__

Graph.__iter__()

Iterate over the nodes. Use the expression ‘for n in G’.

Returns

niter – An iterator over all nodes in the graph.

Return type

iterator

Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
```

edges

Graph.edges(nbunch=None, data=False, default=None)

Return a list of edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters

- nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated through once.
• **data** (bool, optional (default=False)) – Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

Returns

•

edge_list (list of edge tuples) – Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:

edges_iter() return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True)  # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]
```

edges_iter

Graph.edges_iter(nbunch=None, data=False, default=None)

Return an iterator over the edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters

• **nbunch** (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated through once.

• **data** (string or bool, optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v).

• **default** (value, optional (default=None)) – Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.

Returns **edge_iter** – An iterator of (u,v) or (u,v,d) tuples of edges.

Return type iterator

See also:
edges() return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```python
>>> G = nx.Graph()  # or MultiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True))  # default data is {} (empty dict)
[(0, 1), (1, 2), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0,3]))
[(0, 1), (3, 2)]
>>> list(G.edges_iter(0))
[(0, 1)]
```

get_edge_data

Graph.get_edge_data(u, v, default=None)

Return the attribute dictionary associated with edge (u,v).

Parameters

- **u, v** (nodes) –
- **default** (any Python object (default=None)) – Value to return if the edge (u,v) is not found.

Returns

- **edge_dict** – The edge attribute dictionary.

Return type dictionary

Notes

It is faster to use G[u][v].

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0][1]
{}

```

Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary.

```python
>>> G[0][1]['weight'] = 7
>>> G[0][1]['weight']
7
>>> G[1][0]['weight']
7
```
Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1)  # default edge data is {}()
{}()
>>> e = (0,1)
>>> G.get_edge_data(*e)  # tuple form
{}()
>>> G.get_edge_data('a','b',default=0)  # edge not in graph, return 0
0
```

neighbors

NetworkX Reference, Release 1.10

Graph.neighbors(n)

Return a list of the nodes connected to the node n.

Parameters n (node) – A node in the graph

Returns nlist – A list of nodes that are adjacent to n.

Return type list

Raises NetworkXError – If the node n is not in the graph.

Notes

It is usually more convenient (and faster) to access the adjacency dictionary as G[n]:

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=7)
>>> G['a']
{'b': {'weight': 7}}
```

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> list(G.neighbors(0))
[1]
```

neighbors_iter

Graph.neighbors_iter(n)

Return an iterator over all neighbors of node n.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> list(G.neighbors_iter(0))
[1]
```
Notes

It is faster to use the idiom “in G[0]”, e.g.

```python
>>> G = nx.path_graph(4)
>>> [n for n in G[0]]
[1]
```

__getitem__

Graph.__getitem__(n)

Return a dict of neighbors of node n. Use the expression ‘G[n]’.

Parameters

- **n (node)** – A node in the graph.

Returns

- **adj_dict** – The adjacency dictionary for nodes connected to n.

Return type

dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}
```

adjacency_list

Graph.adjacency_list()

Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included.

Returns

- **adj_list** – The adjacency structure of the graph as a list of lists.

Return type
/lists of lists

See also:

adjacency_iter()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list()  # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]
```
adjacency_iter

Graph.adjacency_iter()
Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.

Returns adj_iter – An iterator of (node, adjacency dictionary) for all nodes in the graph.

Return type iterator

See also:
adjacency_list()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
```

nbunch_iter

Graph.nbunch_iter(nbunch=None)
Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated through once.

Returns niter – An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.

Return type iterator

Raises NetworkXError – If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.

See also:
Graph.__iter__()

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure
NetworkX Reference, Release 1.10

Graph has_node(n)
Return True if the graph contains the node n.

Graph.__contains__(n)
Return True if n is a node, False otherwise.

Graph.has_edge(u, v)
Return True if the edge (u,v) is in the graph.

Graph.order()
Return the number of nodes in the graph.

Graph.number_of_nodes()
Return the number of nodes in the graph.

Graph.__len__()
Return the number of nodes.

Graph.degree([nbunch, weight])
Return the degree of a node or nodes.

Graph.degree_iter([nbunch, weight])
Return an iterator for (node, degree).

Graph.size([weight])
Return the number of edges.

Graph.number_of_edges([u, v])
Return the number of edges between two nodes.

Graph.nodes_with_selfloops()
Return a list of nodes with self loops.

Graph.selfloop_edges([data, default])
Return a list of selfloop edges.

Graph.number_of_selfloops()
Return the number of selfloop edges.

has_node

Graph.has_node(n)
Return True if the graph contains the node n.

Parameters

- n (node)

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2])
>>> G.has_node(0)
True

It is more readable and simpler to use

```python
>>> 0 in G
True
```

__contains__

Graph.__contains__(n)
Return True if n is a node, False otherwise. Use the expression ‘n in G’.

Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2, 3])
>>> 1 in G
True
```

has_edge

Graph.has_edge(u, v)
Return True if the edge (u,v) is in the graph.
Parameters \( u, v \) (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.

Returns edge_ind – True if edge is in the graph, False otherwise.

Return type bool

Examples

Can be called either using two nodes \( u, v \) or edge tuple \( (u, v) \)

```python
g = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2, 3])
>>> G.has_edge(0, 1) # using two nodes
True
>>> e = (0, 1)
>>> G.has_edge(*e) # \(e \) is a 2-tuple \((u, v) \)
True
>>> e = (0, 1, {'weight': 7})
>>> G.has_edge(*e[:2]) # \(e \) is a 3-tuple \((u, v, data_dictionary) \)
True
```

The following syntax are all equivalent:

```python
>>> G.has_edge(0, 1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True
```

order

Graph.order()  
Return the number of nodes in the graph.

Returns nnodes – The number of nodes in the graph.

Return type int

See also:

number_of_nodes(), __len__()

number_of_nodes

Graph.number_of_nodes()  
Return the number of nodes in the graph.

Returns nnodes – The number of nodes in the graph.

Return type int

See also:

order(), __len__()
Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3
```

__len__

Graph.__len__()

Return the number of nodes. Use the expression ‘len(G)’.

Returns nnodes – The number of nodes in the graph.

Return type int

Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4
```

degree

Graph.degree(nbunch=None, weight=None)

Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

Parameters

- nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated through once.
- weight (string or None, optional (default=None)) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd – A dictionary with nodes as keys and degree as values or a number if a single node is specified.

Return type dictionary, or number

Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
(0: 1, 1: 2)
>>> list(G.degree([0,1]).values())
[1, 2]
```
degree_iter

Graph\texttt{.degree_iter}(\texttt{nbunch=\textit{None}, weight=\textit{None}})
Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

Parameters

- **\texttt{nbunch}** (iterable container, optional (default=\textit{all nodes}) -- A container of nodes. The container will be iterated through once.
- **\texttt{weight}** (string or None, optional (default=None) -- The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns **\texttt{nd_iter}** -- The iterator returns two-tuples of (node, degree).

Return type an iterator

See also:

degree()

Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]
```

size

Graph\texttt{.size}(\texttt{weight=\textit{None}})
Return the number of edges.

Parameters **\texttt{weight}** (string or None, optional (default=None) -- The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns **\texttt{nedges}** -- The number of edges or sum of edge weights in the graph.

Return type int

See also:

number_of_edges()

Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3
```
```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a', 'b', weight=2)
>>> G.add_edge('b', 'c', weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0
```

**number_of_edges**

*Graph.* number_of_edges*(u=None, v=None)*

Return the number of edges between two nodes.

Parameters *u, v* (nodes, optional (default=all edges)) – If *u* and *v* are specified, return the number of edges between *u* and *v*. Otherwise return the total number of all edges.

Returns *nedges* – The number of edges in the graph. If nodes *u* and *v* are specified return the number of edges between those nodes.

Return type int

See also:

type

**Examples**

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2, 3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0, 1)
1
>>> e = (0, 1)
>>> G.number_of_edges(*e)
1
```

**nodes_with_selfloops**

*Graph.* nodes_with_selfloops()

Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.

Returns *nodelist* – A list of nodes with self loops.

Return type list

See also:

selfloop_edges(), number_of_selfloops()
Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]
```

**selfloop_edges**

*Graph.* `selfloop_edges(data=False, default=None)`

Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

**Parameters**

- `data` *(string or bool, optional (default=False)) – Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue) (data='attrname')*
- `default` *(value, optional (default=None)) – Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.*

**Returns** `edgelist` – A list of all selfloop edges.

**Return type** list of edge tuples

**See also:**

`nodes_with_selfloops()`, `number_of_selfloops()`

Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
```

**number_of_selfloops**

*Graph.* `number_of_selfloops()`

Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

**Returns** `nloops` – The number of selfloops.

**Return type** int

**See also:**

`nodes_with_selfloops()`, `selfloop_edges()`
Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1, 1)
>>> G.add_edge(1, 2)
>>> G.number_of_selfloops()
1
```

Making copies and subgraphs

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>G.copy()</code></td>
<td>Return a copy of the graph.</td>
</tr>
<tr>
<td><code>G.to_undirected()</code></td>
<td>Return an undirected copy of the graph.</td>
</tr>
<tr>
<td><code>G.to_directed()</code></td>
<td>Return a directed representation of the graph.</td>
</tr>
<tr>
<td><code>G.subgraph(nbunch)</code></td>
<td>Return the subgraph induced on nodes in <code>nbunch</code>.</td>
</tr>
</tbody>
</table>

**copy**

`G.copy()`

Return a copy of the graph.

**Returns**

G – A copy of the graph.

**Return type**

`Graph`

**See also**

`to_directed()` return a directed copy of the graph.

**Notes**

This makes a complete copy of the graph including all of the node or edge attributes.

**Examples**

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2, 3])
>>> H = G.copy()
```

**to_undirected**

`G.to_undirected()`

Return an undirected copy of the graph.

**Returns**

G – A deepcopy of the graph.

**Return type**

`Graph/MultiGraph`

**See also**

`copy()`, `add_edge()`, `add_edges_from()`
Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Examples

```python
>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> G2.edges()
[(0, 1)]
```

```
3.2. Basic graph types
```

```python
>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
```

If already directed, return a (deep) copy
NetworkX Reference, Release 1.10

```python
>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0, 1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]
```

**subgraph**

```python
G.subgraph(nbunch)
```

Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.

**Parameters**

- `nbunch` *(list, iterable)* – A container of nodes which will be iterated through once.

**Returns**

- `G` – A subgraph of the graph with the same edge attributes.

**Return type**

- `Graph`

**Notes**

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: `nx.Graph(G.subgraph(nbunch))`

If edge attributes are containers, a deep copy can be obtained using: `G.subgraph(nbunch).copy()`

For an inplace reduction of a graph to a subgraph you can remove nodes: `G.remove_nodes_from([ n in G if n not in set(nbunch)])`

**Examples**

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2, 3])
>>> H = G.subgraph([0, 1, 2])
>>> H.edges()
[(0, 1), (1, 2)]
```

### 3.2.2 DiGraph - Directed graphs with self loops

**Overview**

DiGraph *(data=None, **attr)*

Base class for directed graphs.

A DiGraph stores nodes and edges with optional data, or attributes.

DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

**Parameters**
NetworkX Reference, Release 1.10

- **data** (*input graph*) – Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

- **attr** (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

**See also:**

*Graph(), MultiGraph(), MultiDiGraph()*

**Examples**

Create an empty graph structure (a “null graph”) with no nodes and no edges.

```python
>>> G = nx.DiGraph()
```

G can be grown in several ways.

**Nodes:**

Add one node at a time:

```python
>>> G.add_node(1)
```

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

```python
>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)
```

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph.

```python
>>> G.add_node(H)
```

**Edges:**

G can also be grown by adding edges.

Add one edge,

```python
>>> G.add_edge(1, 2)
```

a list of edges,

```python
>>> G.add_edges_from([(1,2),(1,3)])
```

or a collection of edges,

```python
>>> G.add_edges_from(H.edges())
```

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist.

**Attributes:**

3.2. Basic graph types 37
Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively.

```python
>>> G = nx.DiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}
```

Add node attributes using add_node(), add_nodes_from() or G.node

```python
>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]
```

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

```python
>>> G.add_edge(1, 2, weight=4.7)
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4
```

**Shortcuts:**

Many common graph features allow python syntax to speed reporting.

```python
>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
```

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient.

```python
>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,eattr in nbrsdict.items():
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)
```

```python
>>> G.edges(data='weight')
[(1, 2, 4), (2, 3, 8), (3, 4, None), (4, 5, None)]
```

**Reporting:**

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

**Subclasses (Advanced):**
The Graph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency lists keyed by node. The next dict (adjlist) represents the adjacency list and holds edge data keyed by neighbor. The inner dict (edge_attr) represents the edge data and holds edge attribute values keyed by attribute names.

Each of these three dicts can be replaced by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, adjlist_dict_factory and edge_attr_dict_factory.

**node_dict_factory**  [function, optional (default: dict)] Factory function to be used to create the outer-most dict in the data structure that holds adjacency lists keyed by node. It should require no arguments and return a dict-like object.

**adjlist_dict_factory**  [function, optional (default: dict)] Factory function to be used to create the adjacency list dict which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object.

**edge_attr_dict_factory**  [function, optional (default: dict)] Factory function to be used to create the edge attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object.

**Examples**

Create a graph object that tracks the order nodes are added.

```python
>>> from collections import OrderedDict
>>> class OrderedNodeGraph(nx.Graph):
... node_dict_factory=OrderedDict
... G=OrderedNodeGraph()
... G.add_nodes_from({2,1})
... G.nodes()
... [2, 1]
... G.add_edges_from(((2,2), (2,1), (1,1)))
... G.edges()
... [(2, 2), (2, 1), (1, 1)]
```

Create a graph object that tracks the order nodes are added and for each node track the order that neighbors are added.

```python
>>> class OrderedGraph(nx.Graph):
... node_dict_factory = OrderedDict
... adjlist_dict_factory = OrderedDict
... G = OrderedGraph()
... G.add_nodes_from({2,1})
... G.nodes()
... [2, 1]
... G.add_edges_from(((2,2), (2,1), (1,1)))
... G.edges()
... [(2, 2), (2, 1), (1, 1)]
```

Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all edges. This reduces the memory used, but you lose edge attributes.

```python
>>> class ThinGraph(nx.Graph):
... all_edge_dict = {'weight': 1}
... def single_edge_dict(self):
... return self.all_edge_dict
... edge_attr_dict_factory = single_edge_dict
... G = ThinGraph()
```
Adding and removing nodes and edges

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DiGraph.__init__</code></td>
<td>Initialize a graph with edges, name, graph attributes.</td>
</tr>
<tr>
<td><code>DiGraph.add_node</code></td>
<td>Add a single node n and update node attributes.</td>
</tr>
<tr>
<td><code>DiGraph.add_nodes_from</code></td>
<td>Add multiple nodes.</td>
</tr>
<tr>
<td><code>DiGraph.remove_node</code></td>
<td>Remove node n.</td>
</tr>
<tr>
<td><code>DiGraph.remove_nodes_from</code></td>
<td>Remove multiple nodes.</td>
</tr>
<tr>
<td><code>DiGraph.add_edge</code></td>
<td>Add an edge between u and v.</td>
</tr>
<tr>
<td><code>DiGraph.add_edges_from</code></td>
<td>Add all the edges in ebunch.</td>
</tr>
<tr>
<td><code>DiGraph.add_weighted_edges_from</code></td>
<td>Add all the edges in ebunch as weighted edges with specified weights.</td>
</tr>
<tr>
<td><code>DiGraph.remove_edge</code></td>
<td>Remove the edge between u and v.</td>
</tr>
<tr>
<td><code>DiGraph.remove_edges_from</code></td>
<td>Remove all edges specified in ebunch.</td>
</tr>
<tr>
<td><code>DiGraph.add_star</code></td>
<td>Add a star.</td>
</tr>
<tr>
<td><code>DiGraph.add_path</code></td>
<td>Add a path.</td>
</tr>
<tr>
<td><code>DiGraph.add_cycle</code></td>
<td>Add a cycle.</td>
</tr>
<tr>
<td><code>DiGraph.clear</code></td>
<td>Remove all nodes and edges from the graph.</td>
</tr>
</tbody>
</table>

`DiGraph.__init__`(data=None, **attr)

Initialize a graph with edges, name, graph attributes.

Parameters

- **data (input graph)** – Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
- **name (string, optional (default=’’))** – An optional name for the graph.
- **attr (keyword arguments, optional (default= no attributes))** – Attributes to add to graph as key=value pairs.

See also:

- `convert()`

Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1,2),(2,3),(3,4)] # list of edges
>>> G = nx.Graph(e)
```

Arbitrary graph attribute pairs (key=value) may be assigned
```python
>>> G=nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}
```

### add_node

**add_node** *(n, attr_dict=None, **attr)*

Add a single node n and update node attributes.

**Parameters**

- **n** *(node)* – A node can be any hashable Python object except None.
- **attr_dict** *(dictionary, optional (default= no attributes))* – Dictionary of node attributes.
  Key/value pairs will update existing data associated with the node.
- **attr** *(keyword arguments, optional)* – Set or change attributes using key=value.

**See also:**

*add_nodes_from()*

**Examples**

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3

Use keywords set/change node attributes:

```python
>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))
```

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn’t change on mutables.

add_nodes_from

add_nodes_from *(nodes, **attr)*

Add multiple nodes.

Parameters

- **nodes** *(iterable container)* – A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict.
NetworkX Reference, Release 1.10

- **attr** *(keyword arguments, optional (default= no attributes)) – Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally.*

See also:

add_node()

Examples

```python
g = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
g.add_nodes_from('Hello')
K3 = nx.Graph([(0,1),(1,2),(2,0)])
g.add_nodes_from(K3)
sorted(G.nodes(), key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']
```

Use keywords to update specific node attributes for every node.

```python
g.add_nodes_from([(1,2), size=10])
g.add_nodes_from([(3,4), weight=0.4])
```

Use (node, attrdict) tuples to update attributes for specific nodes.

```python
g.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
g.node[1]['size']
11
h = nx.Graph()
h.add_nodes_from(G.nodes(data=True))
h.node[1]['size']
11
```

remove_node

DiGraph.remove_node(n)

Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.

Parameters

- **n (node)** – A node in the graph

Raises –

NetworkXError – If n is not in the graph.

See also:

remove_nodes_from()

Examples

```python
g = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
g.add_path([0,1,2])
g.edges()
```
remove_nodes_from

DiGraph.remove_nodes_from(nbunch)
Remove multiple nodes.

Parameters
nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.

See also:
remove_node()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]
```

add_edge

DiGraph.add_edge(u, v, attr_dict=None, **attr)
Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below.

Parameters

- **u, v** (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
- **attr_dict** (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge.
- **attr** (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

add_edges_from() add a collection of edges
Notes

Adding an edge that already exists updates the edge data.

Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to a keyword which by default is ‘weight’.

Examples

The following all add the edge e=(1,2) to graph G:

```
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2)  # explicit two-node form
>>> G.add_edge(*e)  # single edge as tuple of two nodes
>>> G.add_edges_from( [(1,2)] )  # add edges from iterable container
```

Associate data to edges using keywords:

```
>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
```

add_edges_from

DiGraph.add_edges_from(ebunch, attr_dict=None, **attr)

Add all the edges in ebunch.

Parameters

- **ebunch** (*container of edges*) – Each edge given in the container will be added to the graph. The edges must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing edge data.
- **attr_dict** (*dictionary, optional (default= no attributes]*) – Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge.
- **attr** (*keyword arguments, optional*) – Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

- **add_edge()** add a single edge
- **add_weighted_edges_from()** convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in edges take precedence over attributes specified generally.

Examples
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([('1,2'),'2,3'), weight=3)
>>> G.add_edges_from([('3,4'),'1,4'], label='WN2898')

add_weighted_edges_from

DiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr)
Add all the edges in ebunch as weighted edges with specified weights.

Parameters

- **ebunch** (container of edges) – Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number.
- **weight** (string, optional (default= 'weight')) – The attribute name for the edge weights to be added.
- **attr** (keyword arguments, optional (default= no attributes)) – Edge attributes to add/update for all edges.

See also:

- add_edge() add a single edge
- add_edges_from() add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])

remove_edge

DiGraph.remove_edge(u, v)
Remove the edge between u and v.

Parameters **u**, **v** (nodes) – Remove the edge between nodes u and v.

Raises NetworkXError – If there is not an edge between u and v.

See also:

- remove_edges_from() remove a collection of edges
Examples

```python
>>> G = nx.Graph()  # or DiGraph, etc
>>> G.add_path([0, 1, 2, 3])
>>> G.remove_edge(0, 1)
>>> e = (1, 2)
>>> G.remove_edge(*e)  # unpacks e from an edge tuple
>>> e = (2, 3, {'weight': 7})  # an edge with attribute data
>>> G.remove_edge(*e[:2])  # select first part of edge tuple
```

remove_edges_from

DiGraph.remove_edges_from(ebunch)

Remove all edges specified in ebunch.

Parameters

- **ebunch** *(list or container of edge tuples)* — Each edge given in the list or container will be removed from the graph. The edges can be:
 - 2-tuples (u,v) edge between u and v.
 - 3-tuples (u,v,k) where k is ignored.

See also:

- remove_edge() — remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2, 3])
>>> ebunch = [(1, 2), (2, 3)]
>>> G.remove_edges_from(ebunch)
```

add_star

DiGraph.add_star(nodes, **attr)

Add a star.

The first node in nodes is the middle of the star. It is connected to all other nodes.

Parameters

- **nodes** *(iterable container)* — A container of nodes.
- **attr** *(keyword arguments, optional (default= no attributes))* — Attributes to add to every edge in star.

See also:

- add_path(), add_cycle()
Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12], weight=2)
```

add_path

DiGraph.add_path(nodes, **attr)

Add a path.

Parameters

- **nodes** *(iterable container)* – A container of nodes. A path will be constructed from the nodes (in order) and added to the graph.
- **attr** *(keyword arguments, optional (default= no attributes))* – Attributes to add to every edge in path.

See also:

add_star(), add_cycle()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12], weight=7)
```

add_cycle

DiGraph.add_cycle(nodes, **attr)

Add a cycle.

Parameters

- **nodes** *(iterable container)* – A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph.
- **attr** *(keyword arguments, optional (default= no attributes))* – Attributes to add to every edge in cycle.

See also:

add_path(), add_star()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12], weight=7)
```
The `clear` method removes all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]
```

Iterating over nodes and edges

- `DiGraph.nodes(data=False)`: Return a list of the nodes in the graph.
- `DiGraph.nodes_iter(data=False)`: Return an iterator over the nodes.
- `DiGraph.__iter__()`: Iterate over the nodes.
- `DiGraph.edges((nbunch, data, default))`: Return a list of edges.
- `DiGraph.edges_iter((nbunch, data, default))`: Return an iterator over the edges.
- `DiGraph.out_edges((nbunch, data, default))`: Return a list of edges.
- `DiGraph.out_edges_iter((nbunch, data, default))`: Return an iterator over the edges.
- `DiGraph.in_edges((nbunch, data))`: Return a list of the incoming edges.
- `DiGraph.in_edges_iter((nbunch, data))`: Return an iterator over the incoming edges.
- `DiGraph.get_edge_data(u, v[, default])`: Return the attribute dictionary associated with edge (u,v).
- `DiGraph.neighbors(n)`: Return a list of successor nodes of n.
- `DiGraph.neighbors_iter(n)`: Return an iterator over successor nodes of n.
- `DiGraph.__getitem__(n)`: Return a dict of neighbors of node n.
- `DiGraph.successors(n)`: Return a list of successor nodes of n.
- `DiGraph.successors_iter(n)`: Return an iterator over successor nodes of n.
- `DiGraph.predecessors(n)`: Return a list of predecessor nodes of n.
- `DiGraph.predecessors_iter(n)`: Return an iterator over predecessor nodes of n.
- `DiGraph.adjacency_list()`: Return an adjacency list representation of the graph.
- `DiGraph.adjacency_iter()`: Return an iterator of (node, adjacency dict) tuples for all nodes.
- `DiGraph.nbunch_iter((nbunch))`: Return an iterator of nodes contained in nbunch that are also in the graph.

Nodes

- `DiGraph.nodes(data=False)`: Return a list of the nodes in the graph.

 Parameters
 - `data (boolean, optional (default=False))` – If False return a list of nodes. If True return a two-tuple of node and node data dictionary.

 Returns
 - `nlist` – A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).

 Return type
 - `list`
Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]
```

`nodes_iter`

`DiGraph.nodes_iter(data=False)`
Return an iterator over the nodes.

Parameters

- `data` *(boolean, optional (default=False)) – If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary*

Returns

- `niter` – An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary)

Return type

`iterator`

Notes

If the node data is not required it is simpler and equivalent to use the expression ‘for n in G’.

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2])
```

__iter__

`DiGraph.__iter__()`
Iterate over the nodes. Use the expression ‘for n in G’.

Returns

- `niter` – An iterator over all nodes in the graph.

Return type

`iterator`

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
```

3.2. Basic graph types
edges

DiGraph.edges (nbunch=None, data=False, default=None)
Return a list of edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated through once.

• data (bool, optional (default=False)) – Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

• Returns –

• edge_list (list of edge tuples) – Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:

diages_iter() return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True)  # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]
```

edges_iter

DiGraph.edges_iter (nbunch=None, data=False, default=None)
Return an iterator over the edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters

• nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated through once.
NetworkX Reference, Release 1.10

- **data** *(string or bool, optional (default=False))* – The edge attribute returned in 3-tuple *(u,v,ddict(data)).* If True, return edge attribute dict in 3-tuple *(u,v,ddict).* If False, return 2-tuple *(u,v).*

- **default** *(value, optional (default=None))* – Value used for edges that don’t have the requested attribute. Only relevant if data is not True or False.

Returns edge_iter – An iterator of *(u,v)* or *(u,v,d)* tuples of edges.

Return type iterator

See also:

edges() return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```python
>>> G = nx.DiGraph()  # or MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True))  # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]
```

out_edges

DiGraph.out_edges *(nbunch=None, data=False, default=None)*

Return a list of edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters

- **nbunch** *(iterable container, optional (default= all nodes))* – A container of nodes. The container will be iterated through once.

- **data** *(bool, optional (default=False))* – Return two tuples *(u,v)* (False) or three-tuples *(u,v,ddict)* (True).

Returns

- **edge_list** *(list of edge tuples)* – Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:

3.2. Basic graph types
edges_iter() return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True)  # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]
```

out_edges_iter

DiGraph.out_edges_iter (nbunch=None, data=False, default=None)

Return an iterator over the edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).

Parameters

- **nbunch** (*iterable container, optional (default= all nodes)*) – A container of nodes. The container will be iterated through once.
- **data** (*string or bool, optional (default=False)*) – The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v).
- **default** (*value, optional (default=None)*) – Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.

Returns **edge_iter** – An iterator of (u,v) or (u,v,d) tuples of edges.

Return type iterator

See also:

- **edges()** return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.
Examples

```python
>>> G = nx.DiGraph()  # or MultiDiGraph, etc
>>> G.add_path([0, 1, 2])
>>> G.add_edge(2, 3, weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True))
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0, 2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]
```

in_edges

DiGraph.\texttt{in_edges}(nbunch=None, data=False)

Return a list of the incoming edges.

See also:

- \texttt{edges()} return a list of edges

in_edges_iter

DiGraph.\texttt{in_edges_iter}(nbunch=None, data=False)

Return an iterator over the incoming edges.

Parameters

- \texttt{nbunch} (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated through once.
- \texttt{data} (bool, optional (default=False)) – If True, return edge attribute dict in 3-tuple (u,v,d).

Returns \texttt{in_edge_iter} – An iterator of (u,v) or (u,v,d) tuples of incoming edges.

Return type iterator

See also:

- \texttt{edges_iter()} return an iterator of edges

get_edge_data

DiGraph.\texttt{get_edge_data}(u, v, default=None)

Return the attribute dictionary associated with edge (u,v).

Parameters

- \texttt{u, v} (nodes) –
- \texttt{default} (any Python object (default=None)) – Value to return if the edge (u,v) is not found.
Returns **edge_dict** – The edge attribute dictionary.

Return type dictionary

Notes

It is faster to use G[u][v].

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2, 3])
>>> G[0][1]
()  
```

Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

```python
>>> G[0][1]['weight'] = 7
>>> G[0][1]['weight']
7
>>> G[1][0]['weight']
7
```

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2, 3])
>>> G.get_edge_data(0, 1)  # default edge data is {}
()
>>> e = (0, 1)
>>> G.get_edge_data(*e)  # tuple form
()
>>> G.get_edge_data('a', 'b', default=0)  # edge not in graph, return 0
0
```

neighbors

`DiGraph.neighbors(n)`

Return a list of successor nodes of `n`.

`neighbors()` and `successors()` are the same function.

neighbors_iter

`DiGraph.neighbors_iter(n)`

Return an iterator over successor nodes of `n`.

`neighbors_iter()` and `successors_iter()` are the same.

__getitem__

`DiGraph.__getitem__(n)`

Return a dict of neighbors of node `n`. Use the expression ‘G[n]’.

Parameters `n` (node) – A node in the graph.
Returns **adj_dict** – The adjacency dictionary for nodes connected to n.

Return type dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.
Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2, 3])
>>> G[0]
{1: {}}
```

successors

DiGraph.**successors**(*n*)

Return a list of successor nodes of n.

neighbors() and successors() are the same function.

successors_iter

DiGraph.**successors_iter**(*n*)

Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

predecessors

DiGraph.**predecessors**(*n*)

Return a list of predecessor nodes of n.

predecessors_iter

DiGraph.**predecessors_iter**(*n*)

Return an iterator over predecessor nodes of n.

adjacency_list

DiGraph.**adjacency_list**()

Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included.

Returns **adj_list** – The adjacency structure of the graph as a list of lists.
Return type lists of lists

See also:

adjacency_iter()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[[1], [0, 2], [1, 3], [2]]

adjacency_iter

DiGraph.\texttt{adjacency_iter}()

Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.

\textbf{Returns} \texttt{adj_iter} – An iterator of (node, adjacency dictionary) for all nodes in the graph.

\textbf{Return type} iterator

See also:

adjacency_list()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

nbunch_iter

DiGraph.\texttt{nbunch_iter}(\texttt{nbunch=\texttt{None}})

Return an iterator of nodes contained in \texttt{nbunch} that are also in the graph.

The nodes in \texttt{nbunch} are checked for membership in the graph and if not are silently ignored.

\textbf{Parameters} \texttt{nbunch} (\texttt{iterable} container, \texttt{optional (default=all nodes)}) – A container of nodes. The container will be iterated through once.

\textbf{Returns} \texttt{niter} – An iterator over nodes in \texttt{nbunch} that are also in the graph. If \texttt{nbunch} is \texttt{None}, iterate over all nodes in the graph.

\textbf{Return type} iterator

\textbf{ Raises } NetworkXError – If \texttt{nbunch} is not a node or or sequence of nodes. If a node in \texttt{nbunch} is not hashable.

See also:

\texttt{Graph.__iter__()}
Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine. If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiGraph.has_node(n)</td>
<td>Return True if the graph contains the node n.</td>
</tr>
<tr>
<td>DiGraph.contains(n)</td>
<td>Return True if n is a node, False otherwise.</td>
</tr>
<tr>
<td>DiGraph.has_edge(u, v)</td>
<td>Return True if the edge (u,v) is in the graph.</td>
</tr>
<tr>
<td>DiGraph.order()</td>
<td>Return the number of nodes in the graph.</td>
</tr>
<tr>
<td>DiGraph.number_of_nodes()</td>
<td>Return the number of nodes in the graph.</td>
</tr>
<tr>
<td>DiGraph.len()</td>
<td>Return the number of nodes.</td>
</tr>
<tr>
<td>DiGraph.degree([nbunch, weight])</td>
<td>Return the degree of a node or nodes.</td>
</tr>
<tr>
<td>DiGraph.in_degree([nbunch, weight])</td>
<td>Return the in-degree of a node or nodes.</td>
</tr>
<tr>
<td>DiGraph.out_degree([nbunch, weight])</td>
<td>Return the out-degree of a node or nodes.</td>
</tr>
<tr>
<td>DiGraph.size([weight])</td>
<td>Return the number of edges.</td>
</tr>
<tr>
<td>DiGraph.number_of_edges([u, v])</td>
<td>Return the number of edges between two nodes.</td>
</tr>
<tr>
<td>DiGraph.nodes_with_selfloops()</td>
<td>Return a list of nodes with self loops.</td>
</tr>
<tr>
<td>DiGraph.selfloop_edges([data, default])</td>
<td>Return a list of selfloop edges.</td>
</tr>
<tr>
<td>DiGraph.number_of_selfloops()</td>
<td>Return the number of selfloop edges.</td>
</tr>
</tbody>
</table>

has_node

DiGraph.**has_node***(n)**

Return True if the graph contains the node n.

Parameters

n (node) –

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True
```

It is more readable and simpler to use

```python
>>> 0 in G
True
```
__contains__

DiGraph.__contains__(n)

Return True if n is a node, False otherwise. Use the expression ‘n in G’.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True
```

has_edge

DiGraph.has_edge(u, v)

Return True if the edge (u,v) is in the graph.

Parameters u, v (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.

Returns edge_ind – True if edge is in the graph, False otherwise.

Return type bool

Examples

Can be called either using two nodes u,v or edge tuple (u,v)

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1)  # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e)  # e is a 2-tuple (u,v)
True
>>> e = (0,1,{'weight':7})
>>> G.has_edge(*e[:2])  # e is a 3-tuple (u,v,data_dictionary)
True
```

The following syntax are all equivalent:

```python
>>> G.has_edge(0,1)
True
>>> 1 in G[0]  # though this gives KeyError if 0 not in G
True
```

order

DiGraph.order()

Return the number of nodes in the graph.

Returns nnodes – The number of nodes in the graph.

Return type int
See also:

\texttt{number_of_nodes()}, \texttt{__len__(__)}

\textbf{number_of_nodes}

\texttt{DiGraph.number_of_nodes()}

Return the number of nodes in the graph.

- \textbf{Returns} \texttt{nnodes} – The number of nodes in the graph.
- \textbf{Return type} \texttt{int}

See also:

\texttt{order()}, \texttt{__len__(__)}

\textbf{__len__}

\texttt{DiGraph._len_()}

Return the number of nodes. Use the expression ‘len(G)’.

- \textbf{Returns} \texttt{nnodes} – The number of nodes in the graph.
- \textbf{Return type} \texttt{int}

\textbf{Examples}

>>> G = nx.Graph()
or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

\textbf{degree}

\texttt{DiGraph.degree(nbunch=None, weight=None)}

Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

\textbf{Parameters}

- \texttt{nbunch} (\textit{iterable container}, \textit{optional (default=all nodes)}) – A container of nodes. The container will be iterated through once.
- \texttt{weight} (\textit{string or None}, \textit{optional (default=None)}) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

3.2. Basic graph types 59
Returns **nd** – A dictionary with nodes as keys and degree as values or a number if a single node is specified.

Return type dictionary, or number

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]
```

degree_iter

DiGraph.**degree_iter**(nbunch=None, weight=None)

Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

Parameters

- **nbunch** (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated through once.
- **weight** (string or None, optional (default=None)) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns **nd_iter** – The iterator returns two-tuples of (node, degree).

Return type an iterator

See also:

degree(), in_degree(), out_degree(), in_degree_iter(), out_degree_iter()

Examples

```python
>>> G = nx.DiGraph()  # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0))  # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]
```

in_degree

DiGraph.**in_degree**(nbunch=None, weight=None)

Return the in-degree of a node or nodes.

The node in-degree is the number of edges pointing in to the node.
Parameters

- **nbunch (iterable container, optional (default=all nodes))** – A container of nodes. The container will be iterated through once.

- **weight (string or None, optional (default=None))** – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns **nd** – A dictionary with nodes as keys and in-degree as values or a number if a single node is specified.

Return type **dictionary, or number**

See also:

- `degree()`, `out_degree()`, `in_degree_iter()`

Examples

```python
>>> G = nx.DiGraph()  # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.in_degree(0)
0
>>> G.in_degree([0,1])
{0: 0, 1: 1}
>>> list(G.in_degree([0,1]).values())
[0, 1]
```

in_degree_iter

DiGraph.in_degree_iter(nbunch=None, weight=None)

Return an iterator for (node, in-degree).

The node in-degree is the number of edges pointing in to the node.

Parameters

- **nbunch (iterable container, optional (default=all nodes))** – A container of nodes. The container will be iterated through once.

- **weight (string or None, optional (default=None))** – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns **nd_iter** – The iterator returns two-tuples of (node, in-degree).

Return type **an iterator**

See also:

- `degree()`, `in_degree()`, `out_degree()`, `out_degree_iter()`

Examples

```python
>>> G = nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.in_degree_iter(0))  # node 0 with degree 0
```
out_degree

DiGraph.\texttt{out_degree}(nbunch=\texttt{None}, weight=\texttt{None})

Return the out-degree of a node or nodes.

The node out-degree is the number of edges pointing out of the node.

\textbf{Parameters}

\begin{itemize}
 \item \texttt{nbunch} (\textit{iterable container, optional (default=all nodes)}) – A container of nodes. The container will be iterated through once.
 \item \texttt{weight} (\textit{string or \texttt{None}, optional (default=\texttt{None})}) – The edge attribute that holds the numerical value used as a weight. If \texttt{None}, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.
\end{itemize}

\textbf{Returns} \texttt{nd} – A dictionary with nodes as keys and out-degree as values or a number if a single node is specified.

\textbf{Return type} dictionary, or number

\textbf{Examples}

\begin{verbatim}
>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.out_degree(0)
1
>>> G.out_degree([0,1])
{0: 1, 1: 1}
>>> list(G.out_degree([0,1]).values())
[1, 1]
\end{verbatim}

out_degree_iter

DiGraph.\texttt{out_degree_iter}(nbunch=\texttt{None}, weight=\texttt{None})

Return an iterator for (node, out-degree).

The node out-degree is the number of edges pointing out of the node.

\textbf{Parameters}

\begin{itemize}
 \item \texttt{nbunch} (\textit{iterable container, optional (default=all nodes)}) – A container of nodes. The container will be iterated through once.
 \item \texttt{weight} (\textit{string or \texttt{None}, optional (default=\texttt{None})}) – The edge attribute that holds the numerical value used as a weight. If \texttt{None}, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.
\end{itemize}

\textbf{Returns} \texttt{nd_iter} – The iterator returns two-tuples of (node, out-degree).

\textbf{Return type} an iterator
See also:

\texttt{degree()}, \texttt{in_degree()}, \texttt{out_degree()}, \texttt{in_degree_iter()}

\textbf{Examples}

\begin{verbatim}
>>> G = nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.out_degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.out_degree_iter([0,1]))
[(0, 1), (1, 1)]
\end{verbatim}

\textbf{size}

\texttt{DiGraph.size(weight=None)}

Return the number of edges.

\textbf{Parameters} \texttt{weight} (\texttt{string or None, optional (default=None)}) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

\textbf{Returns} \texttt{nedges} – The number of edges or sum of edge weights in the graph.

\textbf{Return type} \texttt{int}

\textbf{See also:}

\texttt{number_of_edges()}

\textbf{Examples}

\begin{verbatim}
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0
\end{verbatim}

\textbf{number_of_edges}

\texttt{DiGraph.number_of_edges(u=None, v=None)}

Return the number of edges between two nodes.

\textbf{Parameters} \texttt{u, v} (\texttt{nodes, optional (default=all edges)}) – If \texttt{u} and \texttt{v} are specified, return the number of edges between \texttt{u} and \texttt{v}. Otherwise return the total number of all edges.

\textbf{Returns} \texttt{nedges} – The number of edges in the graph. If \texttt{u} and \texttt{v} are specified return the number of edges between those nodes.

\textbf{Return type} \texttt{int}
See also:
\[size()\]

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1
```

nodes_with_selfloops

DiGraph.\texttt{nodes_with_selfloops\()\)

Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.

Returns \texttt{nodelist} — A list of nodes with self loops.

Return type \texttt{list}

See also:

\texttt{selfloop_edges()}, \texttt{number_of_selfloops()}

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]
```

selfloop_edges

DiGraph.\texttt{selfloop_edges\(data=\text{False}, default=\text{None}\)}

Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

Parameters

- \texttt{data} (\text{string or bool, optional (default=\text{False})}) — Return selfloop edges as two tuples \((u,v)\) (data=\text{False}) or three-tuples \((u,v,\text{datadict})\) (data=\text{True}) or three-tuples \((u,v,\text{datavalue})\) (data=\text{attrname}')

- \texttt{default} (\text{value, optional (default=\text{None})}) — Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.

Returns \texttt{edgelist} — A list of all selfloop edges.
Return type list of edge tuples

See also:

nodes_with_selfloops(), number_of_selfloops()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1, 1)
>>> G.add_edge(1, 2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
```

number_of_selfloops

DiGraph.number_of_selfloops()
Return the number of selfloop edges.
A selfloop edge has the same node at both ends.

Returns nloops – The number of selfloops.

Return type int

See also:

nodes_with_selfloops(), selfloop_edges()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1, 1)
>>> G.add_edge(1, 2)
>>> G.number_of_selfloops()
1
```

Making copies and subgraphs

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiGraph.copy()</td>
<td>Return a copy of the graph.</td>
</tr>
<tr>
<td>DiGraph.to_undirected([reciprocal])</td>
<td>Return an undirected representation of the digraph.</td>
</tr>
<tr>
<td>DiGraph.to_directed()</td>
<td>Return a directed copy of the graph.</td>
</tr>
<tr>
<td>DiGraph.subgraph(nbunch)</td>
<td>Return the subgraph induced on nodes in nbunch.</td>
</tr>
<tr>
<td>DiGraph.reverse([copy])</td>
<td>Return the reverse of the graph.</td>
</tr>
</tbody>
</table>

copy

DiGraph.copy()
Return a copy of the graph.

Returns G – A copy of the graph.
Return type: Graph

See also:

to_directed() return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()
```

to_undirected

DiGraph.to_undirected(reciprocal=False)

Return an undirected representation of the digraph.

Parameters

reciprocal (bool (optional)) – If True only keep edges that appear in both directions in the original digraph.

Returns G – An undirected graph with the same name and nodes and with edge (u,v,data) if either (u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired.

Return type: Graph

Notes

If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add_edge().

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed DiGraph to use dict-like objects in the data structure, those changes do not transfer to the Graph created by this method.

to_directed

DiGraph.to_directed()

Return a directed copy of the graph.

Returns G – A deepcopy of the graph.
Return type \texttt{DiGraph}

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar \texttt{D=DiGraph(G)} which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Examples

```python
>>> G = nx.Graph()  # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
```

If already directed, return a (deep) copy

```python
>>> G = nx.DiGraph()  # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]
```

\textbf{subgraph}

\texttt{DiGraph.subgraph(nbunch)}

Return the subgraph induced on nodes in \texttt{nbunch}.

The induced subgraph of the graph contains the nodes in \texttt{nbunch} and the edges between those nodes.

\textbf{Parameters} \texttt{nbunch} (list, iterable) -- A container of nodes which will be iterated through once.

\textbf{Returns} \texttt{G} -- A subgraph of the graph with the same edge attributes.

\textbf{Return type} \texttt{Graph}

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: \texttt{nx.Graph(G.subgraph(nbunch))}

If edge attributes are containers, a deep copy can be obtained using: \texttt{G.subgraph(nbunch).copy()}

For an inplace reduction of a graph to a subgraph you can remove nodes: \texttt{G.remove_nodes_from([n in G if n not in set(nbunch)])}
Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2, 3])
>>> H = G.subgraph([0, 1, 2])
>>> H.edges()
[(0, 1), (1, 2)]
```

reverse

`DiGraph.reverse(copy=True)`

Return the reverse of the graph.

The reverse is a graph with the same nodes and edges but with the directions of the edges reversed.

Parameters

- `copy` *(bool optional (default=True)) – If True, return a new DiGraph holding the reversed edges. If False, reverse the reverse graph is created using the original graph (this changes the original graph).*

3.2.3 MultiGraph - Undirected graphs with self loops and parallel edges

Overview

MultiGraph *(data=None, **attr)*

An undirected graph class that can store multiedges.

Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.

A MultiGraph holds undirected edges. Self loops are allowed.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters

- `data` *(input graph)* – Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

- `attr` *(keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.*

See also:

`Graph(), DiGraph(), MultiDiGraph()`

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

```python
>>> G = nx.MultiGraph()
```

G can be grown in several ways.

Nodes:
Add one node at a time:

```python
>>> G.add_node(1)
```

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

```python
>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)
```

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph.

```python
>>> G.add_node(H)
```

Edges:

G can also be grown by adding edges.

Add one edge,

```python
>>> G.add_edge(1, 2)
```

a list of edges,

```python
>>> G.add_edges_from([(1,2),(1,3)])
```

or a collection of edges,

```python
>>> G.add_edges_from(H.edges())
```

If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists, an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused integer.

```python
>>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
>>> G[4]
{3: {0: {}}, 5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}
```

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively.

```python
>>> G = nx.MultiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}
```

Add node attributes using add_node(), add_nodes_from() or G.node

```python
>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]
```
Warning: adding a node to G.node does not add it to the graph.
Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

```python
>>> G.add_edge(1, 2, weight=4.7)
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2),{'color':'blue'}], (2,3),{'weight':8}))
>>> G[1][2][0]['weight'] = 4.7
>>> G.edge[1][2][0]['weight'] = 4
```

Shortcuts:

Many common graph features allow python syntax to speed reporting.

```python
>>> 1 in G   # check if node in graph
True
>>> [n for n in G if n<3]  # iterate through nodes
[1, 2]
>>> len(G)  # number of nodes in graph
5
>>> G[1]  # adjacency dict keyed by neighbor to edge attributes
...
...  # Note: you should not change this dict manually!
...  {2: {0: {'weight': 4}, 1: {'color': 'blue'}}}
```

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient.

```python
>>> for n, nbrsdct in G.adjacency_iter():
...   for nbr, keydict in nbrsdct.items():
...     for key, eattr in keydict.items():
...       if 'weight' in eattr:
...         (n, nbr, key, eattr['weight'])
...         (1, 2, 0, 4)
...         (2, 1, 0, 4)
...         (2, 3, 0, 8)
...         (3, 2, 0, 8)
...   for n, nbr, key, eattr['weight']
...   (1, 2, 0, 4)
...   (2, 1, 0, 4)
...   (2, 3, 0, 8)
...   (3, 2, 0, 8)
```

Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

The MultiGraph class uses a dict-of-dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency lists keyed by node. The next dict (adjlist) represents the adjacency list and holds edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr dict keyed by edge key. The inner dict (edge_attr) represents the edge data and holds edge attribute values keyed by attribute names.

Each of these four dicts in the dict-of-dict-of-dict-of-dict structure can be replaced by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, adjlist_dict_factory, edge_key_dict_factory and edge_attr_dict_factory.

node_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict in the data structure that holds adjacency lists keyed by node. It should require no arguments and return a dict-like
object.

adjlist_dict_factory [function, (default: dict)] Factory function to be used to create the adjacency list dict which holds multiedge key dicts keyed by neighbor. It should require no arguments and return a dict-like object.

edge_key_dict_factory [function, (default: dict)] Factory function to be used to create the edge key dict which holds edge data keyed by edge key. It should require no arguments and return a dict-like object.

edge_attr_dict_factory [function, (default: dict)] Factory function to be used to create the edge attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object.

Examples

Create a multigraph object that tracks the order nodes are added.

```python
>>> from collections import OrderedDict
>>> class OrderedGraph(nx.MultiGraph):
...   node_dict_factory = OrderedDict
...   adjlist_dict_factory = OrderedDict
...   edge_key_dict_factory = OrderedDict
...   def __init__(self):
...     self.node_dict = {}
...     self.adjlist_dict = {}
...     self.edge_key_dict = {}
...   def add_node(self, n):
...     self.node_dict[n] = self.node_dict.get(n, 1)
...     self.adjlist_dict.setdefault(n, {})
...     self.edge_key_dict.setdefault(n, {})
...   def add_edge(self, u, v, key=None, attrdict=None):
...     self.adjlist_dict.setdefault(u, {})[v] = self.edge_key_dict.setdefault(u, {}).setdefault(key, 1)
...     self.edge_key_dict.setdefault(u, {}).setdefault(key, {}).setdefault(v, 1)
...   def add_edges_from(self, ebunch, attrdict=None):
...     for u, v in ebunch:
...       self.add_edge(u, v)
...     for u, v, key in ebunch:
...       self.add_edge(u, v, key, attrdict)
...   def remove_edge(self, u, v, key=None):
...     if key in self.edge_key_dict.get(u, {})
...       del self.edge_key_dict[u][key]
...       del self.edge_key_dict[v][key]
```

Create a multigraph object that tracks the order nodes are added and for each node track the order that neighbors are added and for each neighbor tracks the order that multiedges are added.

```python
>>> class OrderedGraph(nx.MultiGraph):
...   def __init__(self):
...     self.node_dict = {}
...     self.adjlist_dict = {}
...     self.edge_key_dict = {}
...   def add_node(self, n):
...     self.node_dict[n] = self.node_dict.get(n, 1)
...     self.adjlist_dict.setdefault(n, {})
...     self.edge_key_dict.setdefault(n, {})
...   def add_edge(self, u, v, key=None, attrdict=None):
...     self.adjlist_dict.setdefault(u, {})[v] = self.edge_key_dict.setdefault(u, {}).setdefault(key, 1)
...     self.edge_key_dict.setdefault(u, {}).setdefault(key, {}).setdefault(v, 1)
...   def add_edges_from(self, ebunch, attrdict=None):
...     for u, v in ebunch:
...       self.add_edge(u, v)
...     for u, v, key in ebunch:
...       self.add_edge(u, v, key, attrdict)
...   def remove_edge(self, u, v, key=None):
...     if key in self.edge_key_dict.get(u, {})
...       del self.edge_key_dict[u][key]
...       del self.edge_key_dict[v][key]
```

Adding and removing nodes and edges

- **MultiGraph.add_node**(*n*, **attr)** Add a single node *n* and update node attributes.
- **MultiGraph.remove_node**(*n*) Remove node *n*.
- **MultiGraph.add_nodes_from**(*nodes*, **attr**) Add multiple nodes.
- **MultiGraph.remove_nodes_from**(*nodes*) Remove multiple nodes.
- **MultiGraph.add_edge**(*u*, *v*, **attr**) Add an edge between *u* and *v*.
- **MultiGraph.add_edges_from**(*ebunch*, **attr**) Add all the edges in *ebunch*.
- **MultiGraph.add_weighted_edges_from**(*ebunch*, **attr**) Add all the edges in *ebunch* as weighted edges with specified weights.
- **MultiGraph.remove_edges_from**(*ebunch*, **attr**) Remove edges from *ebunch*.

Continued on next page...
Table 3.9 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MultiGraph.remove_edges_from(ebunch)</code></td>
<td>Remove all edges specified in <code>ebunch</code>.</td>
</tr>
<tr>
<td><code>MultiGraph.add_star(nodes, **attr)</code></td>
<td>Add a star.</td>
</tr>
<tr>
<td><code>MultiGraph.add_path(nodes, **attr)</code></td>
<td>Add a path.</td>
</tr>
<tr>
<td><code>MultiGraph.add_cycle(nodes, **attr)</code></td>
<td>Add a cycle.</td>
</tr>
<tr>
<td><code>MultiGraph.clear()</code></td>
<td>Remove all nodes and edges from the graph.</td>
</tr>
</tbody>
</table>

__init__

`MultiGraph.__init__(data=None, **attr)`

add_node

`MultiGraph.add_node(n, attr_dict=None, **attr)`

Add a single node `n` and update node attributes.

Parameters

- `n (node)` – A node can be any hashable Python object except None.
- `attr_dict (dictionary, optional (default=no attributes))` – Dictionary of node attributes. Key/value pairs will update existing data associated with the node.
- `attr (keyword arguments, optional)` – Set or change attributes using key=value.

See also:

`add_nodes_from()`

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3
```

Use keywords set/change node attributes:

```python
>>> G.add_node(1, size=10)
>>> G.add_node(3, weight=0.4, UTM=('13S',382871,3972649))
```

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn’t change on mutables.
add_nodes_from

MultiGraph.add_nodes_from(nodes, **attr)
Add multiple nodes.

Parameters

- `nodes` *(iterable container)* – A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict.
- `attr` *(keyword arguments, optional (default= no attributes))* – Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally.

See also:

`add_node()`

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(), key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']
```

Use keywords to update specific node attributes for every node.

```python
>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)
```

Use (node, attrdict) tuples to update attributes for specific nodes.

```python
>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11
```

remove_node

MultiGraph.remove_node(n)
Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.

Parameters

- `n` *(node)* – A node in the graph
- `Raises` –
 - `networkx.NetworkXError` – If n is not in the graph.
See also:

`remove_nodes_from()`

Examples

```python
g = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
g.add_path([0, 1, 2])
g.edges()
[(0, 1), (1, 2)]
g.remove_node(1)
g.edges()
[]
```

`remove_nodes_from`

MultiGraph.

Remove multiple nodes.

Parameters:

- `nodes` (iterable container) – A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.

See also:

`remove_node()`

Examples

```python
g = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
g.add_path([0, 1, 2])
e = g.nodes()
e
[0, 1, 2]
g.remove_nodes_from(e)
g.nodes()
[]
```

`add_edge`

MultiGraph.

Add an edge between `u` and `v`.

The nodes `u` and `v` will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below.

Parameters

- `u, v` (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
- `key` (hashable identifier, optional (default=lowest unused integer)) – Used to distinguish multiedges between a pair of nodes.
• **attr_dict** *(dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge.*
• **attr** *(keyword arguments, optional) – Edge data (or labels or objects) can be assigned using keyword arguments.*

See also:

```python
add_edges_from() add a collection of edges
```

Notes

To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge will be created.

NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear how to handle multiedge weights. Convert to Graph using edge attribute ‘weight’ to enable weighted graph algorithms.

Examples

The following all add the edge e=(1,2) to graph G:

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from( [(1,2)] ) # add edges from iterable container
```

Associate data to edges using keywords:

```python
>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 2, key=0, weight=4) # update data for key=0
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
```

add_edges_from

```python
MultiGraph.add_edges_from(ebunch, attr_dict=None, **attr)
```

Add all the edges in ebunch.

Parameters

• **ebunch** *(container of edges) – Each edge given in the container will be added to the graph. The edges can be:
 – 2-tuples (u,v) or
 – 3-tuples (u,v,d) for an edge attribute dict d, or
 – 4-tuples (u,v,k,d) for an edge identified by key k

• **attr_dict** *(dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge.*
• **attr** *(keyword arguments, optional) – Edge data (or labels or objects) can be assigned using keyword arguments.*

See also:
add_edge() add a single edge

add_weighted_edges_from() convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in edges take precedence over attributes specified generally.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)])  # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e)  # Add the path graph 0-1-2-3
```

Associate data to edges

```python
>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')
```

add_weighted_edges_from

`MultiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr)`
Add all the edges in `ebunch` as weighted edges with specified weights.

Parameters

- **ebunch** (*container of edges*) – Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number.

- **weight** (*string, optional (default= 'weight')*) – The attribute name for the edge weights to be added.

- **attr** (*keyword arguments, optional (default= no attributes)*) – Edge attributes to add/update for all edges.

See also:

- **add_edge()** add a single edge

- **add_edges_from()** add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])
```
remove_edge

MultiGraph.remove_edge(u, v, key=None)

Remove an edge between u and v.

Parameters

- **u, v** (nodes) – Remove an edge between nodes u and v.
- **key** (hashable identifier, optional (default=None)) – Used to distinguish multiple edges between a pair of nodes. If None remove a single (arbitrary) edge between u and v.

Raises NetworkXError – If there is not an edge between u and v, or if there is no edge with the specified key.

See also:

remove_edges_from() remove a collection of edges

Examples

```python
g = nx.MultiGraph()
g.add_path([0,1,2,3])
g.remove_edge(0,1)
e = (1,2)
g.remove_edge(*e)  # unpacks e from an edge tuple
```

For multiple edges

```python
g = nx.MultiGraph()  # or MultiDiGraph, etc
g.add_edges_from([(1,2),(1,2),(1,2)])
g.remove_edge(1,2)  # remove a single (arbitrary) edge
```

For edges with keys

```python
g = nx.MultiGraph()  # or MultiDiGraph, etc
g.add_edge(1,2,key='first')
g.add_edge(1,2,key='second')
g.remove_edge(1,2,key='second')
```

remove_edges_from

MultiGraph.remove_edges_from(ebunch)

Remove all edges specified in ebunch.

Parameters **ebunch** (list or container of edge tuples) – Each edge given in the list or container will be removed from the graph. The edges can be:

- 2-tuples (u,v) All edges between u and v are removed.
- 3-tuples (u,v,key) The edge identified by key is removed.
- 4-tuples (u,v,key,data) where data is ignored.

See also:

remove_edge() remove a single edge
Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

```python
>>> G = nx.MultiGraph()  # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2), (2,3)]
>>> G.remove_edges_from(ebunch)
```

Removing multiple copies of edges

```python
>>> G = nx.MultiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edges_from([(1,2),(1,2)])
>>> G.edges()
[(1, 2)]
>>> G.remove_edges_from([(1,2),(1,2)])  # silently ignore extra copy
>>> G.edges()  # now empty graph
[]
```

add_star

MultiGraph.add_star(nodes, **attr)

Add a star.

The first node in nodes is the middle of the star. It is connected to all other nodes.

Parameters

- **nodes** (*iterable container*) – A container of nodes.
- **attr** (*keyword arguments, optional (default= no attributes)*) – Attributes to add to every edge in star.

See also:

add_path(), add_cycle()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12], weight=2)
```

add_path

MultiGraph.add_path(nodes, **attr)

Add a path.

Parameters

- **nodes** (*iterable container*) – A container of nodes. A path will be constructed from the nodes (in order) and added to the graph.
• **attr** *(keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in path.*

See also:

`add_star()`, `add_cycle()`

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12], weight=7)
```

add_cycle

`MultiGraph.add_cycle(nodes, **attr)`

Add a cycle.

Parameters

- **nodes** *(iterable container)* – A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph.

- **attr** *(keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in cycle.*

See also:

`add_path()`, `add_star()`

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12], weight=7)
```

clear

`MultiGraph.clear()`

Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]
```
Iterating over nodes and edges

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MultiGraph.nodes(data)</code></td>
<td>Return a list of the nodes in the graph.</td>
</tr>
<tr>
<td><code>MultiGraph.nodes_iter(data)</code></td>
<td>Return an iterator over the nodes.</td>
</tr>
<tr>
<td><code>MultiGraph.__iter__</code></td>
<td>Iterate over the nodes.</td>
</tr>
<tr>
<td><code>MultiGraph.edges()</code></td>
<td>Return a list of edges.</td>
</tr>
<tr>
<td><code>MultiGraph.edges_iter()</code></td>
<td>Return an iterator over the edges.</td>
</tr>
<tr>
<td><code>MultiGraph.get_edge_data(u, v, key, default)</code></td>
<td>Return the attribute dictionary associated with edge (u,v).</td>
</tr>
<tr>
<td><code>MultiGraph.neighbors(n)</code></td>
<td>Return a list of the nodes connected to the node n.</td>
</tr>
<tr>
<td><code>MultiGraph.neighbors_iter(n)</code></td>
<td>Return an iterator over all neighbors of node n.</td>
</tr>
<tr>
<td><code>MultiGraph.adjacency_list()</code></td>
<td>Return an adjacency list representation of the graph.</td>
</tr>
<tr>
<td><code>MultiGraph.adjacency_iter()</code></td>
<td>Return an iterator of (node, adjacency dict) tuples for all nodes.</td>
</tr>
<tr>
<td><code>MultiGraph.nbunch_iter()</code></td>
<td>Return an iterator of nodes contained in nbunch that are also in the graph.</td>
</tr>
</tbody>
</table>

nodes

MultiGraph.nodes (data=False)

Return a list of the nodes in the graph.

Parameters

- **data** (boolean, optional (default=False)) – If False return a list of nodes. If True return a two-tuple of node and node data dictionary

Returns

- **nlist** – A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).

Return type

- list

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[0, {}, (1, {'time': '5pm'}), (2, {})]
```

nodes_iter

MultiGraph.nodes_iter (data=False)

Return an iterator over the nodes.

Parameters

- **data** (boolean, optional (default=False)) – If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary

Returns

- **niter** – An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary)

Return type

- iterator
Notes

If the node data is not required it is simpler and equivalent to use the expression ‘for n in G’.

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
```

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
```

```python
>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]
```

__iter__

MultiGraph.__iter__()
Iterate over the nodes. Use the expression ‘for n in G’.

Returns niter – An iterator over all nodes in the graph.

Return type iterator

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
```

edges

MultiGraph.edges (nbunch=None, data=False, keys=False, default=None)
Return a list of edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters

- **nbunch** (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated through once.
- **data** (bool, optional (default=False)) – Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).
- **keys** (bool, optional (default=False)) – Return two tuples (u,v) (False) or three-tuples (u,v,key) (True).

Returns –

- **edge_list** (list of edge tuples) – Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:
`edges_iter()` return an iterator over the edges

Notes

Nodes in `nbunch` that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```python
g = nx.MultiGraph()  # or MultiDiGraph
g.add_path([0, 1, 2])
g.add_edge(2, 3, weight=5)
g.edges()
[(0, 1), (1, 2), (2, 3)]
g.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
list(g.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
g.edges(keys=True) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
g.edges(data=True, keys=True) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
list(g.edges(data='weight', default=1, keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
g.edges([0, 3])
[(0, 1), (3, 2)]
g.edges(0)
[(0, 1)]
```
Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```python
g = nx.MultiGraph()  # or MultiDiGraph
g.add_path([0, 1, 2])
g.add_edge(2, 3, weight=5)
[e for e in g.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
```

```python
list(g.edges_iter(data=True))
# default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
```

```python
list(g.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
```

```python
list(g.edges(keys=True))
# default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
```

```python
list(g.edges(data=True, keys=True))
# default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
```

```python
list(g.edges_iter([0, 3]))
[(0, 1), (3, 2)]
```

get_edge_data

`MultiGraph.get_edge_data(u, v, key=None, default=None)`

Return the attribute dictionary associated with edge (u,v).

Parameters

- **u, v** (nodes) –
- **default** *(any Python object (default=None)) – Value to return if the edge (u,v) is not found.*
- **key** *(hashable identifier, optional (default=None)) – Return data only for the edge with specified key.*

Returns edge_dict – The edge attribute dictionary.

Return type dictionary

Notes

It is faster to use G[u][v][key].

```python
g = nx.MultiGraph()  # or MultiDiGraph
g.add_edge(0, 1, key='a', weight=7)
g[0][1]['a']  # key='a'
{'weight': 7}
```

Warning: Assigning G[u][v][key] corrupts the graph data structure. But it is safe to assign attributes to that dictionary.

3.2. Basic graph types
Examples

```python
>>> G = nx.MultiGraph()  # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1)
{0: {}}
>>> e = (0,1)
>>> G.get_edge_data(*e)  # tuple form
{0: {}}
>>> G.get_edge_data('a','b',default=0)  # edge not in graph, return 0
0
```

neighbors

`MultiGraph.neighbors(n)`
Return a list of the nodes connected to the node n.

Parameters

- **n (node)** – A node in the graph

Returns

- **nlist** – A list of nodes that are adjacent to n.

Return type

list

Raises

`NetworkXError` – If the node n is not in the graph.

Notes

It is usually more convenient (and faster) to access the adjacency dictionary as G[n]:

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=7)
>>> G['a']
{'b': {'weight': 7}}
```

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.neighbors(0)
[1]
```

neighbors_iter

`MultiGraph.neighbors_iter(n)`
Return an iterator over all neighbors of node n.
Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2, 3])
>>> [n for n in G.neighbors_iter(0)]
[1]
```

Notes

It is faster to use the idiom “in G[0]”, e.g.

```python
>>> G = nx.path_graph(4)
>>> [n for n in G[0]]
[1]
```

__getitem__

MultiGraph.__getitem__(n)
Return a dict of neighbors of node n. Use the expression ‘G[n]’.

Parameters

- **n** (node) – A node in the graph.

Returns

adj_dict – The adjacency dictionary for nodes connected to n.

Return type
dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.
Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2, 3])
>>> G[0]
{1: {}}
```

adjacency_list

MultiGraph.adjacency_list()
Return an adjacency list representation of the graph.
The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included.

Returns
adj_list – The adjacency structure of the graph as a list of lists.

Return type
lists of lists

See also:

adjacency_iter()
Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list()  # in order given by G.nodes()
[(1), (0, 2), (1, 3), (2)]
```

adjacency_iter

`MultiGraph.adjacency_iter()`
Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.

Returns
adj_iter – An iterator of (node, adjacency dictionary) for all nodes in the graph.

Return type
iterator

See also:

`adjacency_list()`

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]

[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
```

nbunch_iter

`MultiGraph.nbunch_iter(nbunch=None)`
Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters
nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated through once.

Returns
niter – An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.

Return type
iterator

Raises
`NetworkXError` – If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.

See also:

`Graph.__iter__()`

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.
To test whether nbunch is a single node, one can use “if nbunch in self.”, even after processing with this routine. If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MultiGraph.has_node(n)</td>
<td>Return True if the graph contains the node n.</td>
</tr>
<tr>
<td>MultiGraph.contains(n)</td>
<td>Return True if n is a node. False otherwise.</td>
</tr>
<tr>
<td>MultiGraph.has_edge(u, v[, key])</td>
<td>Return True if the graph has an edge between nodes u and v.</td>
</tr>
<tr>
<td>MultiGraph.order()</td>
<td>Return the number of nodes in the graph.</td>
</tr>
<tr>
<td>MultiGraph.number_of_nodes()</td>
<td>Return the number of nodes in the graph.</td>
</tr>
<tr>
<td>MultiGraph.degree([nbunch, weight])</td>
<td>Return the degree of a node or nodes.</td>
</tr>
<tr>
<td>MultiGraph.degree_iter([nbunch, weight])</td>
<td>Return an iterator for (node, degree).</td>
</tr>
<tr>
<td>MultiGraph.size([weight])</td>
<td>Return the number of edges.</td>
</tr>
<tr>
<td>MultiGraph.number_of_edges([u, v])</td>
<td>Return the number of edges between two nodes.</td>
</tr>
<tr>
<td>MultiGraph.nodes_with_selfloops()</td>
<td>Return a list of nodes with self loops.</td>
</tr>
<tr>
<td>MultiGraph.selfloop_edges([data, keys, default])</td>
<td>Return a list of selfloop edges.</td>
</tr>
<tr>
<td>MultiGraph.number_of_selfloops()</td>
<td>Return the number of selfloop edges.</td>
</tr>
</tbody>
</table>

has_node

MultiGraph.has_node(n)
Return True if the graph contains the node n.

Parameters n (node) –

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True
```

It is more readable and simpler to use

```python
>>> 0 in G
True
```

__contains__

MultiGraph.__contains__(n)
Return True if n is a node. False otherwise. Use the expression ‘n in G’.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True
```
has_edge

MultiGraph . has_edge (u, v, key=None)

Return True if the graph has an edge between nodes u and v.

Parameters

• u, v (nodes) – Nodes can be, for example, strings or numbers.
• key (hashable identifier, optional (default=None)) – If specified return True only if the edge
 with key is found.

Returns edge_ind – True if edge is in the graph, False otherwise.

Return type bool

Examples

Can be called either using two nodes u,v, an edge tuple (u,v), or an edge tuple (u,v,key).

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> G.add_edge(0,1,key='a')
>>> G.has_edge(0,1,key='a') # specify key
True
>>> e=(0,1,'a')
>>> G.has_edge(*e) # e is a 3-tuple (u,v,'a')
True

The following syntax are equivalent:

>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

order

MultiGraph . order ()

Return the number of nodes in the graph.

Returns nnodes – The number of nodes in the graph.

Return type int

See also:

number_of_nodes (), __len__ ()

number_of_nodes

MultiGraph . number_of_nodes ()

Return the number of nodes in the graph.
Returns **nnodes** – The number of nodes in the graph.

Return type int

See also:

order(), *__len__()__

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3
```

__len__

MultiGraph.__len__()

Return the number of nodes. Use the expression ‘len(G)’.

Returns **nnodes** – The number of nodes in the graph.

Return type int

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4
```

degree

MultiGraph.degree (nbunch=None, weight=None)

Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

Parameters

- **nbunch** *(iterable container, optional (default=all nodes))* – A container of nodes. The container will be iterated through once.

- **weight** *(string or None, optional (default=None))* – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns **nd** – A dictionary with nodes as keys and degree as values or a number if a single node is specified.

Return type dictionary, or number
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]

degree_iter

MultiGraph.degree_iter(nbunch=None, weight=None)
Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

Parameters

• nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated through once.

• weight (string or None, optional (default=None)) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd_iter – The iterator returns two-tuples of (node, degree).

Return type an iterator

See also:
degree()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]

size

MultiGraph.size(weight=None)
Return the number of edges.

Parameters weight (string or None, optional (default=None)) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns nedges – The number of edges or sum of edge weights in the graph.

Return type int
See also:

number_of_edges()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3

>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0
```

number_of_edges

MultiGraph.number_of_edges (u=None, v=None)

Return the number of edges between two nodes.

Parameters

- **u, v** (nodes, optional (default=all edges)) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.

Returns

- **nedges** – The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes.

Return type

- **int**

See also:

size()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = {0,1}
>>> G.number_of_edges(*e)
1
```

nodes_with_selfloops

MultiGraph.nodes_with_selfloops()

Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.
Returns `nodelist` – A list of nodes with self loops.

Return type list

See also:

`selfloop_edges()`, `number_of_selfloops()`

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]
```

`selfloop_edges`

`MultiGraph.selfloop_edges(data=False, keys=False, default=None)`

Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

Parameters

- **data** (`bool, optional (default=False)`) – Return selfloop edges as two tuples `(u,v)` (data=False) or three-tuples `(u,v,datadict)` (data=True) or three-tuples `(u,v,datavalue)` (data='attrname')
- **default** (`value, optional (default=None)`) – Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.
- **keys** (`bool, optional (default=False)`) – If True, return edge keys with each edge.

Returns `edgelist` – A list of all selfloop edges.

Return type list of edge tuples

See also:

`nodes_with_selfloops()`, `number_of_selfloops()`

Examples

```python
>>> G = nx.MultiGraph()  # or MultiDiGraph
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
>>> G.selfloop_edges(keys=True)
[(1, 1, 0)]
>>> G.selfloop_edges(keys=True, data=True)
[(1, 1, 0, {})]
```
number_of_selfloops

`MultiGraph.number_of_selfloops()`
Return the number of selfloop edges.
A selfloop edge has the same node at both ends.

Returns `nloops` – The number of selfloops.
Return type `int`

See also:

`nodes_with_selfloops()`, `selfloop_edges()`

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1
```

Making copies and subgraphs

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copy()</code></td>
<td>Return a copy of the graph.</td>
</tr>
<tr>
<td><code>to_undirected()</code></td>
<td>Return an undirected copy of the graph.</td>
</tr>
<tr>
<td><code>to_directed()</code></td>
<td>Return a directed representation of the graph.</td>
</tr>
<tr>
<td><code>subgraph(nbunch)</code></td>
<td>Return the subgraph induced on nodes in <code>nbunch</code>.</td>
</tr>
</tbody>
</table>

copy

`MultiGraph.copy()`
Return a copy of the graph.

Returns `G` – A copy of the graph.
Return type `Graph`

See also:

to_directed()
return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()
```
to_undirected

MultiGraph.to_undirected()

Return an undirected copy of the graph.

Returns G – A deepcopy of the graph.

Return type Graph/MultiGraph

See also:
copy(), add_edge(), add_edges_from()

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H_edges()
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> G2_edges()
[(0, 1)]

to_directed

MultiGraph.to_directed()

Return a directed representation of the graph.

Returns G – A directed graph with the same name, same nodes, and with each edge (u,v,data) replaced by two directed edges (u,v,data) and (v,u,data).

Return type MultiDiGraph

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not transfer to the MultiDiGraph created by this method.
Examples

```python
>>> G = nx.Graph()  # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
```

If already directed, return a (deep) copy

```python
>>> G = nx.DiGraph()  # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]
```

subgraph

```python
MultiGraph.subgraph(nbunch)
```

Return the subgraph induced on nodes in `nbunch`.

The induced subgraph of the graph contains the nodes in `nbunch` and the edges between those nodes.

Parameters

- `nbunch` *(list, iterable)* – A container of nodes which will be iterated through once.

Returns

- `G` – A subgraph of the graph with the same edge attributes.

Return type

`Graph`

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: `nx.Graph(G.subgraph(nbunch))`

If edge attributes are containers, a deep copy can be obtained using: `G.subgraph(nbunch).copy()`

For an inplace reduction of a graph to a subgraph you can remove nodes: `G.remove_nodes_from([n in G if n not in set(nbunch)])`

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]
```

3.2.4 MultiDiGraph - Directed graphs with self loops and parallel edges

Overview

```python
MultiDiGraph(data=None, **attr)
```

A directed graph class that can store multiedges.

3.2. Basic graph types
Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.

A MultiDiGraph holds directed edges. Self loops are allowed.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.

Parameters

- **data** (*input graph*) – Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

- **attr** (*keyword arguments, optional (default= no attributes]*) – Attributes to add to graph as key=value pairs.

See also:

`Graph()`, `DiGraph()`, `MultiGraph()`

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

```python
>>> G = nx.MultiDiGraph()
```

G can be grown in several ways.

Nodes:

Add one node at a time:

```python
>>> G.add_node(1)
```

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

```python
>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)
```

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph.

```python
>>> G.add_node(H)
```

Edges:

G can also be grown by adding edges.

Add one edge,

```python
>>> G.add_edge(1, 2)
```

a list of edges,

```python
>>> G.add_edges_from([(1,2),(1,3)])
```

or a collection of edges,
NetworkX Reference, Release 1.10

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists,
an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused
integer.

>>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
>>> G[4]
{5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}

Attributes:
Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys
must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct
manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = nx.MultiDiGraph(day="Friday")
>>> G.graph
 {'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
 {'time': '5pm'}
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.
Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7)
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2][0]['weight'] = 4.7
>>> G.edge[1][2][0]['weight'] = 4

Shortcuts:
Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
>>> G[1] # adjacency dict keyed by neighbor to edge attributes
... # Note: you should not change this dict manually!
... {2: {0: {'weight': 4}, 1: {'color': 'blue'}}}

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more
convenient.

>>> for n,nbrsdct in G.adjacency_iter():
... for nbr,keydict in nbrsdct.items():
... for key,eattr in keydict.items():

3.2. Basic graph types 97
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)

>>> G.edges(data='weight')
[(1, 2, 4), (1, 2, None), (2, 3, 8), (3, 4, None), (4, 5, None)]

Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure. The outer dict (node_dict) holds adjacency lists keyed by node. The next dict (adjlist) represents the adjacency list and holds edge_key dicts keyed by neighbor. The edge_key_dict holds each edge_attr dict keyed by edge key. The inner dict (edge_attr) represents the edge data and holds edge attribute values keyed by attribute names.

Each of these four dicts in the dict-of-dict-of-dict-of-dict structure can be replaced by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class() variable holding the factory for that dict-like structure. The variable names are node_dict_factory, adjlist_dict_factory, edge_key_dict_factory and edge_attr_dict_factory.

node_dict_factory [function, (default: dict)] Factory function to be used to create the outer-most dict in the data structure that holds adjacency lists keyed by node. It should require no arguments and return a dict-like object.

adjlist_dict_factory [function, (default: dict)] Factory function to be used to create the adjacency list dict which holds multiedge key dicts keyed by neighbor. It should require no arguments and return a dict-like object.

edge_key_dict_factory [function, (default: dict)] Factory function to be used to create the edge key dict which holds edge data keyed by edge key. It should require no arguments and return a dict-like object.

edge_attr_dict_factory [function, (default: dict)] Factory function to be used to create the edge attribute dict which holds attribute values keyed by attribute name. It should require no arguments and return a dict-like object.

Examples

Create a multigraph object that tracks the order nodes are added.

```python
>>> from collections import OrderedDict

>>> class OrderedGraph(nx.MultiDiGraph):
...     node_dict_factory = OrderedDict

>>> G = OrderedGraph()

>>> G.add_nodes_from( (2,1) )

>>> G.nodes()
[2, 1]

>>> G.add_edges_from( ((2,2), (2,1), (2,1), (1,1)) )

>>> G.edges()
[(2, 1), (2, 1), (2, 2), (1, 1)]
```
Create a multigraph object that tracks the order nodes are added and for each node track the order that neighbors are added and for each neighbor tracks the order that multiedges are added.

```python
>>> class OrderedGraph(nx.MultiDiGraph):
...    node_dict_factory = OrderedDict
...    adjlist_dict_factory = OrderedDict
...    edge_key_dict_factory = OrderedDict

>>> G = OrderedGraph()
>>> G.add_nodes_from( (2, 1) )
>>> G.nodes()
[2, 1]
>>> G.add_edges_from( ((2,2), (2,1,2,{'weight':0.1}), (2,1,1,{'weight':0.2}), (1,1)) )
>>> G.edges(keys=True)
[(2, 2, 0), (2, 1, 2), (2, 1, 1), (1, 1, 0)]
```

Adding and Removing Nodes and Edges

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>__init__</code></td>
<td>Initialize the multi-diagram with data</td>
</tr>
<tr>
<td><code>add_node</code></td>
<td>Add a single node and update node attributes</td>
</tr>
<tr>
<td><code>add_nodes_from</code></td>
<td>Add multiple nodes</td>
</tr>
<tr>
<td><code>remove_node</code></td>
<td>Remove a single node</td>
</tr>
<tr>
<td><code>remove_nodes_from</code></td>
<td>Remove multiple nodes</td>
</tr>
<tr>
<td><code>add_edge</code></td>
<td>Add an edge between two nodes</td>
</tr>
<tr>
<td><code>add_edges_from</code></td>
<td>Add all the edges in the edge list</td>
</tr>
<tr>
<td><code>add_weighted_edges_from</code></td>
<td>Add all the edges in the edge list as weighted edges</td>
</tr>
<tr>
<td><code>remove_edge</code></td>
<td>Remove an edge between two nodes</td>
</tr>
<tr>
<td><code>remove_edges_from</code></td>
<td>Remove all edges specified in the edge list</td>
</tr>
<tr>
<td><code>add_star</code></td>
<td>Add a star</td>
</tr>
<tr>
<td><code>add_path</code></td>
<td>Add a path</td>
</tr>
<tr>
<td><code>add_cycle</code></td>
<td>Add a cycle</td>
</tr>
<tr>
<td><code>clear</code></td>
<td>Remove all nodes and edges from the graph</td>
</tr>
</tbody>
</table>

__init__

`MultiDiGraph.__init__(data=None, **attr)`

add_node

`MultiDiGraph.add_node(n, attr_dict=None, **attr)`

Add a single node and update node attributes.

Parameters

- `n (node)` – A node can be any hashable Python object except None.
- `attr_dict` (dictionary, optional (default= no attributes)) – Dictionary of node attributes.
 Key/value pairs will update existing data associated with the node.
- `attr` (keyword arguments, optional) – Set or change attributes using key=value.

See also:

add_nodes_from()
Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3
```

Use keywords set/change node attributes:

```python
>>> G.add_node(1, size=10)
>>> G.add_node(3, weight=0.4, UTM=('13S',382871,3972649))
```

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn’t change on mutables.

```python
add_nodes_from
```

MultDiGraph.add_nodes_from(nodes, **attr)
Add multiple nodes.

Parameters
- `nodes` (*iterable container*) — A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict.
- `attr` (*keyword arguments, optional (default= no attributes]*) — Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally.

See also:
- `add_node()`

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(), key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']
```

Use keywords to update specific node attributes for every node.

```python
>>> G.add_nodes_from([(1,2), size=10)
>>> G.add_nodes_from([(3,4), weight=0.4)
```

Use (node, attrdict) tuples to update attributes for specific nodes.
```python
>>> G.add_nodes_from([(1, dict(size=11)), (2, {'color': 'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11
```

remove_node

MultiDiGraph.remove_node(n)

Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.

Parameters

- **n (node)** – A node in the graph

Raises

- **------**
 - **NetworkXError** – If n is not in the graph.

See also:

remove_nodes_from()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]
```

remove_nodes_from

MultiDiGraph.remove_nodes_from(nbunch)

Remove multiple nodes.

Parameters

- **nodes (iterable container)** – A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.

See also:

remove_node()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]
```
```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]
```

add_edge

`MultiDiGraph.add_edge(u, v, key=None, attr_dict=None, **attr)`

Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below.

Parameters

- **u, v** (nodes) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
- **key** (hashable identifier, optional (default=lowest unused integer)) – Used to distinguish multiedges between a pair of nodes.
- **attr_dict** (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge.
- **attr** (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

`add_edges_from()` add a collection of edges

Notes

To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge will be created.

NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear how to handle multiedge weights. Convert to Graph using edge attribute ‘weight’ to enable weighted graph algorithms.

Examples

The following all add the edge e=(1,2) to graph G:

```python
>>> G = nx.MultiDiGraph()
>>> e = (1,2)
>>> G.add_edge(1, 2)  # explicit two-node form
>>> G.add_edge(*e)  # single edge as tuple of two nodes
>>> G.add_edges_from( [(1,2)] )  # add edges from iterable container
```
Associate data to edges using keywords:

```python
g.add_edge(1, 2, weight=3)
g.add_edge(1, 2, key=0, weight=4)  # update data for key=0
g.add_edge(1, 3, weight=7, capacity=15, length=342.7)
```

add_edges_from

MultiDiGraph.add_edges_from(ebunch, attr_dict=None, **attr)

Add all the edges in ebunch.

Parameters

- **ebunch** (container of edges) – Each edge given in the container will be added to the graph. The edges can be:
 - 2-tuples (u,v) or
 - 3-tuples (u,v,d) for an edge attribute dict d, or
 - 4-tuples (u,v,k,d) for an edge identified by key k
- **attr_dict** (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge.
- **attr** (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

- add_edge() add a single edge
- add_weighted_edges_from() convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in edges take precedence over attributes specified generally.

Examples

```python
g = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
g.add_edges_from([(0,1),(1,2)])  # using a list of edge tuples
e = zip(range(0,3),range(1,4))
g.add_edges_from(e)  # Add the path graph 0-1-2-3
```

Associate to edges

```python
g.add_edges_from([(1,2),(2,3)], weight=3)
g.add_edges_from([(3,4),(1,4)], label='WN2898')
```

add_weighted_edges_from

MultiDiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr)

Add all the edges in ebunch as weighted edges with specified weights.
Parameters

- **ebunch (container of edges)** – Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples (u,v,w) where w is a number.

- **weight (string, optional (default= 'weight'))** – The attribute name for the edge weights to be added.

- **attr (keyword arguments, optional (default= no attributes))** – Edge attributes to add/update for all edges.

See also:

* **add_edge()** add a single edge
* **add_edges_from()** add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])
```

remove_edge

MultiDiGraph. **remove_edge (u, v, key=None)**

Remove an edge between u and v.

Parameters

- **u, v (nodes)** – Remove an edge between nodes u and v.

- **key (hashable identifier, optional (default=None))** – Used to distinguish multiple edges between a pair of nodes. If None remove a single (arbitrary) edge between u and v.

Raises **NetworkXError** – If there is not an edge between u and v, or if there is no edge with the specified key.

See also:

* **remove_edges_from()** remove a collection of edges

Examples

```python
>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e)  # unpacks e from an edge tuple
```

For multiple edges
```python
>>> G = nx.MultiDiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edge(1,2)  # remove a single (arbitrary) edge

For edges with keys
```n
```python
>>> G = nx.MultiDiGraph()
>>> G.add_edge(1,2,key='first')
>>> G.add_edge(1,2,key='second')
>>> G.remove_edge(1,2,key='second')
```

remove_edges_from

MultDiGraph.remove_edges_from(ebunch)

Remove all edges specified in ebunch.

Parameters

- **ebunch** (list or container of edge tuples) – Each edge given in the list or container will be removed from the graph. The edges can be:
 - 2-tuples (u,v) All edges between u and v are removed.
 - 3-tuples (u,v,key) The edge identified by key is removed.
 - 4-tuples (u,v,key,data) where data is ignored.

See also

- **remove_edge**() remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

```python
>>> G = nx.MultiGraph()  # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)

Removing multiple copies of edges
```n
```python
>>> G = nx.MultiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edges_from([(1,2),(1,2)])
>>> G.edges()
[(1, 2)]
>>> G.remove_edges_from([(1,2),(1,2)])  # silently ignore extra copy
>>> G.edges()  # now empty graph
[]
```n
3.2. Basic graph types
add_star

MultiDiGraph.add_star(nodes, **attr)
 Add a star.
 The first node in nodes is the middle of the star. It is connected to all other nodes.

Parameters

• nodes (iterable container) – A container of nodes.
• attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every
 edge in star.

See also:
add_path(), add_cycle()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)

add_path

MultiDiGraph.add_path(nodes, **attr)
 Add a path.

Parameters

• nodes (iterable container) – A container of nodes. A path will be constructed from the
 nodes (in order) and added to the graph.
• attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every
 edge in path.

See also:
add_star(), add_cycle()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=2)

add_cycle

MultiDiGraph.add_cycle(nodes, **attr)
 Add a cycle.

Parameters

• nodes (iterable container) – A container of nodes. A cycle will be constructed from the
 nodes (in order) and added to the graph.
• **attr** *(keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in cycle.*

See also:

add_path(), add_star()

Examples

```python
>>> G=nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12], weight=7)
```

clear

`MultiDiGraph.clear()`
Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]
```

Iterating over nodes and edges

- `MultiDiGraph.nodes(data)`: Return a list of the nodes in the graph.
- `MultiDiGraph.nodes_iter(data)`: Return an iterator over the nodes.
- `MultiDiGraph.__iter__()`: Iterate over the nodes.
- `MultiDiGraph.edges(nbunch, data, keys, default)`: Return a list of edges.
- `MultiDiGraph.edges_iter(nbunch, data, ...)`: Return an iterator over the edges.
- `MultiDiGraph.out_edges(nbunch, keys, data)`: Return a list of the outgoing edges.
- `MultiDiGraph.out_edges_iter(nbunch, data, ...)`: Return an iterator over the edges.
- `MultiDiGraph.in_edges(nbunch, keys, data)`: Return a list of the incoming edges.
- `MultiDiGraph.in_edges_iter(nbunch, data, keys)`: Return an iterator over the incoming edges.
- `MultiDiGraph.get_edge_data(u, v[, key, default])`: Return the attribute dictionary associated with edge (u,v).
- `MultiDiGraph.neighbors(n)`: Return a list of successor nodes of n.
- `MultiDiGraph.neighbors_iter(n)`: Return an iterator over successor nodes of n.
- `MultiDiGraph.__getitem__(n)`: Return a dict of neighbors of node n.
- `MultiDiGraph.successors(n)`: Return a list of successor nodes of n.
- `MultiDiGraph.successors_iter(n)`: Return an iterator over successor nodes of n.
- `MultiDiGraph.predecessors(n)`: Return a list of predecessor nodes of n.
- `MultiDiGraph.predecessors_iter(n)`: Return an iterator over predecessor nodes of n.
nodes

MultiDiGraph.nodes (*data=False*)

Return a list of the nodes in the graph.

Parameters

- **data** *(boolean, optional (default=False))* – If False return a list of nodes. If True return a two-tuple of node and node data dictionary.

Returns

- **nlist** – A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).

Return type

- list

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]
```

nodes_iter

MultiDiGraph.nodes_iter (*data=False*)

Return an iterator over the nodes.

Parameters

- **data** *(boolean, optional (default=False))* – If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary.

Returns

- **niter** – An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data dictionary).

Return type

- iterator

Notes

If the node data is not required it is simpler and equivalent to use the expression ‘for n in G’.

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
```

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
```
>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

__iter__

MultiDiGraph.__iter__()
Iterate over the nodes. Use the expression ‘for n in G’.

Returns niter – An iterator over all nodes in the graph.

Return type iterator

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

edges

MultiDiGraph.edges(nbunch=None, data=False, keys=False, default=None)
Return a list of edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters

- nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated through once.
- data (bool, optional (default=False)) – Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).
- keys (bool, optional (default=False)) – Return two tuples (u,v) (False) or three-tuples (u,v,key) (True).

Returns –

- edge_list (list of edge tuples) – Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:

diag graph_iter() return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples
```python
>>> G = nx.MultiGraph()  # or MultiDiGraph
>>> G.add_path([0, 1, 2])
>>> G.add_edge(2, 3, weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True)  # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges(keys=True)  # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> G.edges(data=True, keys=True)  # default keys are integers
[(0, 1, 0, {}), (1, 2, 1, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1, keys=True))
[(0, 1, 0, 1), (1, 2, 1, 1), (2, 3, 0, 5)]
>>> G.edges([0, 3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]
```

edges_iter

`MultiDiGraph.edges_iter(nbunch=None, data=False, keys=False, default=None)`

Return an iterator over the edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters

- `nbunch (iterable container, optional (default= all nodes))` – A container of nodes. The container will be iterated through once.
- `data (string or bool, optional (default=False))` – The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v).
- `keys (bool, optional (default=False))` – If True, return edge keys with each edge.
- `default (value, optional (default=None))` – Value used for edges that dont have the requested attribute. Only relevant if data is not True or False.

Returns

- `edge_iter` – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

Return type

`iterator`

See also:

- `edges()` return a list of edges

Notes

Nodes in `nbunch` that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.
Examples

```python
>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True))
# default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter('weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter(keys=True))
# default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges_iter('weight', default=1, keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
```

out_edges

`MultiDiGraph.out_edges()`

Return a list of the outgoing edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters

- `nbunch` *(iterable container, optional (default=all nodes))* – A container of nodes. The container will be iterated through once.
- `data` *(bool, optional (default=False))* – If True, return edge attribute dict with each edge.
- `keys` *(bool, optional (default=False))* – If True, return edge keys with each edge.

Returns `out_edges` – An list of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

Return type list

Notes

Nodes in `nbunch` that are not in the graph will be (quietly) ignored. For directed graphs `edges()` is the same as `out_edges()`.

See also:

- `in_edges()` return a list of incoming edges

out_edges_iter

`MultiDiGraph.out_edges_iter()`

Return an iterator over the edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters

- **nbunch** *(iterable container, optional (default= all nodes))* – A container of nodes. The container will be iterated through once.

- **data** *(string or bool, optional (default=False))* – The edge attribute returned in 3-tuple *(u,v,ddict[data]).* If True, return edge attribute dict in 3-tuple *(u,v,ddict).* If False, return 2-tuple *(u,v).*

- **keys** *(bool, optional (default=False))* – If True, return edge keys with each edge.

- **default** *(value, optional (default=None))* – Value used for edges that don’t have the requested attribute. Only relevant if data is not True or False.

Returns edge_iter – An iterator of *(u,v), (u,v,d)* or *(u,v,key,d)* tuples of edges.

Return type iterator

See also:

- **edges()** return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```python
>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True))  # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True))  # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True,keys=True))  # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
```
• **data** *(bool, optional (default=False))* – If True, return edge attribute dict with each edge.

• **keys** *(bool, optional (default=False))* – If True, return edge keys with each edge.

Returns in_edges – A list of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

Return type list

See also:

out_edges() return a list of outgoing edges

in_edges_iter

MultiDiGraph.

in_edges_iter(nbunch=None, data=False, keys=False)

Return an iterator over the incoming edges.

Parameters

• **nbunch** *(iterable container, optional (default= all nodes))* – A container of nodes. The container will be iterated through once.

• **data** *(bool, optional (default=False))* – If True, return edge attribute dict with each edge.

• **keys** *(bool, optional (default=False))* – If True, return edge keys with each edge.

Returns in_edge_iter – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

Return type iterator

See also:

edges_iter() return an iterator of edges

get_edge_data

MultiDiGraph.

get_edge_data(u, v, key=None, default=None)

Return the attribute dictionary associated with edge (u,v).

Parameters

• **u, v** *(nodes)*

• **default** *(any Python object (default=None))* – Value to return if the edge (u,v) is not found.

• **key** *(hashable identifier, optional (default=None))* – Return data only for the edge with specified key.

Returns edge_dict – The edge attribute dictionary.

Return type dictionary

Notes

It is faster to use G[u][v][key].

3.2. Basic graph types
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(0,1,key='a',weight=7)
>>> G[0][1]['a'] # key='a'
{'weight': 7}

Warning: Assigning G[u][v][key] corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

>>> G[0][1]['a']['weight'] = 10
>>> G[0][1]['a']['weight']
10
>>> G[1][0]['a']['weight']
10

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1)
{0: {}}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{0: {}}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0

neighbors

MultiDiGraph.neighbors(n)
Return a list of successor nodes of n.
neighbors() and successors() are the same function.

neighbors_iter

MultiDiGraph.neighbors_iter(n)
Return an iterator over successor nodes of n.
neighbors_iter() and successors_iter() are the same.

__getitem__

MultiDiGraph.__getitem__(n)
Return a dict of neighbors of node n. Use the expression ‘G[n]’.

Parameters n (node) – A node in the graph.

Returns adj_dict – The adjacency dictionary for nodes connected to n.

Return type dictionary
Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list. Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}
```

successors

MultiDiGraph.successors(n)

Return a list of successor nodes of n.

neighbors() and successors() are the same function.

successors_iter

MultiDiGraph.successors_iter(n)

Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

predecessors

MultiDiGraph.predecessors(n)

Return a list of predecessor nodes of n.

predecessors_iter

MultiDiGraph.predecessors_iter(n)

Return an iterator over predecessor nodes of n.

adjacency_list

MultiDiGraph.adjacency_list()

Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included.

Returns adj_list – The adjacency structure of the graph as a list of lists.

Return type lists of lists

See also:

adjacency_iter()
Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list()  # in order given by G.nodes()
[(1), (0, 2), (1, 3), (2)]
```

adjacency_iter

`MultiDiGraph.adjacency_iter()`

Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.

Returns `adj_iter` – An iterator of (node, adjacency dictionary) for all nodes in the graph.

Return type iterator

See also:
`adjacency_list()`

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
```

nbunch_iter

`MultiDiGraph.nbunch_iter(nbunch=None)`

Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters `nbunch` (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated through once.

Returns `niter` – An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.

Return type iterator

Raises `NetworkXError` – If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.

See also:
`Graph.__iter__()`

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.
To test whether nbunch is a single node, one can use "if nbunch in self.", even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>has_node(n)</code></td>
<td>Return True if the graph contains the node n.</td>
</tr>
<tr>
<td><code>__contains__(n)</code></td>
<td>Return True if n is a node, False otherwise.</td>
</tr>
<tr>
<td><code>has_edge(u, v[, key])</code></td>
<td>Return True if the graph has an edge between nodes u and v.</td>
</tr>
<tr>
<td><code>order()</code></td>
<td>Return the number of nodes in the graph.</td>
</tr>
<tr>
<td><code>number_of_nodes()</code></td>
<td>Return the number of nodes in the graph.</td>
</tr>
<tr>
<td><code>degree([nbunch, weight])</code></td>
<td>Return the degree of a node or nodes.</td>
</tr>
<tr>
<td><code>degree_iter([nbunch, weight])</code></td>
<td>Return an iterator for (node, degree).</td>
</tr>
<tr>
<td><code>in_degree([nbunch, weight])</code></td>
<td>Return the in-degree of a node or nodes.</td>
</tr>
<tr>
<td><code>in_degree_iter([nbunch, weight])</code></td>
<td>Return an iterator for (node, in-degree).</td>
</tr>
<tr>
<td><code>out_degree([nbunch, weight])</code></td>
<td>Return the out-degree of a node or nodes.</td>
</tr>
<tr>
<td><code>out_degree_iter([nbunch, weight])</code></td>
<td>Return an iterator for (node, out-degree).</td>
</tr>
<tr>
<td><code>size([weight])</code></td>
<td>Return the number of edges.</td>
</tr>
<tr>
<td><code>number_of_edges([u, v])</code></td>
<td>Return the number of edges between two nodes.</td>
</tr>
<tr>
<td><code>nodes_with_selfloops()</code></td>
<td>Return a list of nodes with self loops.</td>
</tr>
<tr>
<td><code>selfloop_edges([data, keys, ...])</code></td>
<td>Return a list of selfloop edges.</td>
</tr>
<tr>
<td><code>number_of_selfloops()</code></td>
<td>Return the number of selfloop edges.</td>
</tr>
</tbody>
</table>

has_node

`MultiDiGraph.has_node(n)`

Return True if the graph contains the node n.

Parameters

n (node) –

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0, 1, 2])
>>> G.has_node(0)
True
```

It is more readable and simpler to use

```python
>>> 0 in G
True
```

__contains__

`MultiDiGraph.__contains__(n)`

Return True if n is a node, False otherwise. Use the expression ‘n in G’.

3.2. Basic graph types
Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True
```

has_edge

MultiDiGraph.<u,v, key=\(\text{None}\)> has_edge\((u, v, key=\text{None})\)

Return True if the graph has an edge between nodes u and v.

Parameters

- **u**, **v** (nodes) – Nodes can be, for example, strings or numbers.
- **key** (hashable identifier, optional (default=\text{None})\) – If specified return True only if the edge with key is found.

Returns

- edge_ind – True if edge is in the graph, False otherwise.

Return type

bool

Examples

Can be called either using two nodes u,v, an edge tuple (u,v), or an edge tuple (u,v,key).

```python
>>> G = nx.MultiGraph()  # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1)  # using two nodes
True
>>> g = (0,1)
>>> G.has_edge(*g)  # g is a 2-tuple (u,v)
True
>>> G.add_edge(0,1,key='a')
>>> G.has_edge(0,1,key='a')  # specify key
True
>>> e=(0,1,'a')
>>> G.has_edge(*e)  # e is a 3-tuple (u,v,'a')
True
```

The following syntax are equivalent:

```python
>>> G.has_edge(0,1)
True
>>> 1 in G[0]  # though this gives KeyError if 0 not in G
True
```

order

MultiDiGraph.<u,v, key=\(\text{None}\)> order()

Return the number of nodes in the graph.

Returns

- nnodes – The number of nodes in the graph.

Return type

int
See also:

number_of_nodes(), __len__()

number_of_nodes

MultiDiGraph.number_of_nodes()
Return the number of nodes in the graph.

Returns nnodes – The number of nodes in the graph.

Return type int

See also:

order(), __len__()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

__len__

MultiDiGraph.__len__()
Return the number of nodes. Use the expression ‘len(G)’.

Returns nnodes – The number of nodes in the graph.

Return type int

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4

degree

MultiDiGraph.degree(nbunch=None, weight=None)
Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

Parameters

- nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated through once.

- weight (string or None, optional (default=None)) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.
Returns nd – A dictionary with nodes as keys and degree as values or a number if a single node is specified.

Return type dictionary, or number

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]
```

degree_iter

MultiDiGraph.degree_iter(nbunch=None, weight=None)

Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

Parameters

- **nbunch** (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated through once.
- **weight** (string or None, optional (default=None)) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights.

Returns nd_iter – The iterator returns two-tuples of (node, degree).

Return type an iterator

See also:

degree()

Examples

```python
>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0))  # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]
```

in_degree

MultiDiGraph.in_degree(nbunch=None, weight=None)

Return the in-degree of a node or nodes.

The node in-degree is the number of edges pointing in to the node.
Parameters

- **nbunch** (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated through once.

- **weight** (string or None, optional (default=None)) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd – A dictionary with nodes as keys and in-degree as values or a number if a single node is specified.

Return type dictionary, or number

See also:

degree(), out_degree(), in_degree_iter()

Examples

```python
g = nx.DiGraph() # or MultiDiGraph
g.add_path([0,1,2,3])
g.in_degree(0)
0
g.in_degree([0,1])
{0: 0, 1: 1}
list(g.in_degree([0,1]).values())
[0, 1]
```

in_degree_iter

MultiDiGraph.in_degree_iter (nbunch=None, weight=None)

Return an iterator for (node, in-degree).

The node in-degree is the number of edges pointing in to the node.

Parameters

- **nbunch** (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated through once.

- **weight** (string or None, optional (default=None)) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns nd_iter – The iterator returns two-tuples of (node, in-degree).

Return type an iterator

See also:

degree(), in_degree(), out_degree(), out_degree_iter()

Examples

```python
g = nx.MultiDiGraph()
g.add_path([0,1,2,3])
list(g.in_degree_iter(0)) # node 0 with degree 0
```
out_degree

MultiDiGraph.out_degree(nbunch=None, weight=None)
Return the out-degree of a node or nodes.

The node out-degree is the number of edges pointing out of the node.

Parameters

- **nbunch** *(iterable container, optional (default=all nodes))* – A container of nodes. The container will be iterated through once.
- **weight** *(string or None, optional (default=None))* – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

Returns **nd** – A dictionary with nodes as keys and out-degree as values or a number if a single node is specified.

Return type *dictionary, or number*

Examples

```python
>>> G = nx.DiGraph()  # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.out_degree(0)
1
>>> G.out_degree([0,1])
{0: 1, 1: 1}
>>> list(G.out_degree([0,1]).values())
[1, 1]
```

out_degree_iter

MultiDiGraph.out_degree_iter(nbunch=None, weight=None)
Return an iterator for (node, out-degree).

The node out-degree is the number of edges pointing out of the node.

Parameters

- **nbunch** *(iterable container, optional (default=all nodes))* – A container of nodes. The container will be iterated through once.
- **weight** *(string or None, optional (default=None))* – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights.

Returns **nd_iter** – The iterator returns two-tuples of (node, out-degree).

Return type *an iterator*
See also:

degree(), in_degree(), out_degree(), in_degree_iter()

Examples

```python
>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.out_degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.out_degree_iter([0,1]))
[(0, 1), (1, 1)]
```

size

MultiDiGraph.size(weight=None)
Return the number of edges.

Parameters weight (string or None, optional (default=None)) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns nedges – The number of edges or sum of edge weights in the graph.

Return type int

See also:

number_of_edges()

Examples

```python
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3
```

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b', weight=2)
>>> G.add_edge('b','c', weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0
```

number_of_edges

MultiDiGraph.number_of_edges(u=None, v=None)
Return the number of edges between two nodes.

Parameters u, v (nodes, optional (default=all edges)) – If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.

Returns nedges – The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes.

Return type int
See also:

size()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1
```

nodes_with_selfloops

MultiDiGraph.nodes_with_selfloops()
Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.

Returns nodelist – A list of nodes with self loops.

Return type list

See also:

selfloop_edges(), number_of_selfloops()

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]
```

selfloop_edges

MultiDiGraph.selfloop_edges(data=False, keys=False, default=None)
Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

Parameters

- **data** (bool, optional (default=False)) – Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,datadict) (data=True) or three-tuples (u,v,datavalue) (data='attrname')

- **default** (value, optional (default=None)) – Value used for edges that don't have the requested attribute. Only relevant if data is not True or False.

- **keys** (bool, optional (default=False)) – If True, return edge keys with each edge.
Returns edgelist – A list of all selfloop edges.

Return type list of edge tuples

See also:

`nodes_with_selfloops()`, `number_of_selfloops()`

Examples

```python
>>> G = nx.MultiGraph()  # or MultiDiGraph
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
>>> G.selfloop_edges(keys=True)
[(1, 1, 0)]
>>> G.selfloop_edges(keys=True, data=True)
[(1, 1, 0, {})]
```

number_of_selfloops

`MultiDiGraph.number_of_selfloops()`

Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

Returns nloops – The number of selfloops.

Return type int

See also:

`nodes_with_selfloops()`, `selfloop_edges()`

Examples

```python
>>> G=nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1
```

Making copies and subgraphs

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MultiDiGraph.copy()</code></td>
<td>Return a copy of the graph.</td>
</tr>
<tr>
<td><code>MultiDiGraph.to_undirected([reciprocal])</code></td>
<td>Return an undirected representation of the digraph.</td>
</tr>
<tr>
<td><code>MultiDiGraph.to_directed()</code></td>
<td>Return a directed copy of the graph.</td>
</tr>
<tr>
<td><code>MultiDiGraph.subgraph(nbunch)</code></td>
<td>Return the subgraph induced on nodes in nbunch.</td>
</tr>
<tr>
<td><code>MultiDiGraph.reverse([copy])</code></td>
<td>Return the reverse of the graph.</td>
</tr>
</tbody>
</table>

3.2. Basic graph types 125
copy

`MultiDiGraph.copy()`

Return a copy of the graph.

Returns `G` – A copy of the graph.

Return type `Graph`

See also:

`to_directed()` return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()
```

to_undirected

`MultiDiGraph.to_undirected(reciprocal=False)`

Return an undirected representation of the digraph.

Parameters `reciprocal (bool (optional))` – If True only keep edges that appear in both directions in the original digraph.

Returns `G` – An undirected graph with the same name and nodes and with edge `(u,v,data)` if either `(u,v,data)` or `(v,u,data)` is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired.

Return type `MultiGraph`

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed MultiGraph to use dict-like objects in the data structure, those changes do not transfer to the MultiDiGraph created by this method.
to_directed

MultiDiGraph.to_directed()
Return a directed copy of the graph.

Returns G – A deepcopy of the graph.
Return type MultiDiGraph

Notes

If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add_edge().

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Examples

```python
>>> G = nx.Graph()  # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
If already directed, return a (deep) copy
```  
```python
>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]
```

subgraph

MultiDiGraph.subgraph(nbunch)
Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.

Parameters nbunch (list, iterable) – A container of nodes which will be iterated through once.

Returns G – A subgraph of the graph with the same edge attributes.

Return type Graph
Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)])

Examples

```python
>>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]
```

```
``` reverse

MultiDiGraph.reverse(copy=True)

Return the reverse of the graph.

The reverse is a graph with the same nodes and edges but with the directions of the edges reversed.

Parameters copy (bool optional (default=True)) – If True, return a new DiGraph holding the reversed edges. If False, reverse the reverse graph is created using the original graph (this changes the original graph).
4.1 Approximation

4.1.1 Connectivity

Fast approximation for node connectivity

| all_pairs_node_connectivity(G[, nbunch, cutoff]) | Compute node connectivity between all pairs of nodes. |
| local_node_connectivity(G, source, target[, ...]) | Compute node connectivity between source and target. |
| node_connectivity(G[, s, t]) | Returns an approximation for node connectivity for a graph or digraph |

all_pairs_node_connectivity

all_pairs_node_connectivity(G, nbunch=\text{None}, cutoff=\text{None})

Compute node connectivity between all pairs of nodes.

Pairwise or local node connectivity between two distinct and nonadjacent nodes is the minimum number of nodes that must be removed (minimum separating cutset) to disconnect them. By Menger’s theorem, this is equal to the number of node independent paths (paths that share no nodes other than source and target). Which is what we compute in this function.

This algorithm is a fast approximation that gives an strict lower bound on the actual number of node independent paths between two nodes\(^1\). It works for both directed and undirected graphs.

Parameters

- G (\text{NetworkX graph}) –
- nbunch (\text{container}) – Container of nodes. If provided node connectivity will be computed only over pairs of nodes in nbunch.
- cutoff (\text{integer}) – Maximum node connectivity to consider. If None, the minimum degree of source or target is used as a cutoff in each pair of nodes. Default value None.

Returns K – Dictionary, keyed by source and target, of pairwise node connectivity

Return type dictionary

See also:

local_node_connectivity(), all_pairs_node_connectivity()

References

local_node_connectivity

`local_node_connectivity(G, source, target, cutoff=None)`

Compute node connectivity between source and target.

Pairwise or local node connectivity between two distinct and nonadjacent nodes is the minimum number of
nodes that must be removed (minimum separating cutset) to disconnect them. By Menger’s theorem, this is
equal to the number of node independent paths (paths that share no nodes other than source and target). Which
is what we compute in this function.

This algorithm is a fast approximation that gives an strict lower bound on the actual number of node independent
paths between two nodes 2. It works for both directed and undirected graphs.

Parameters

- `G` (*NetworkX graph*) –
- `source` (*node*) – Starting node for node connectivity
- `target` (*node*) – Ending node for node connectivity
- `cutoff` (*integer*) – Maximum node connectivity to consider. If None, the minimum degree
 of source or target is used as a cutoff. Default value None.

Returns `k` – pairwise node connectivity

Return type integer

Examples

```python
>>> # Platonic icosahedral graph has node connectivity 5
>>> # for each non adjacent node pair
>>> from networkx.algorithms import approximation as approx
>>> G = nx.icosahedral_graph()
>>> approx.local_node_connectivity(G, 0, 6)
5
```

Notes

This algorithm 1 finds node independents paths between two nodes by computing their shortest path using BFS,
marking the nodes of the path found as ‘used’ and then searching other shortest paths excluding the nodes
marked as used until no more paths exist. It is not exact because a shortest path could use nodes that, if the path
were longer, may belong to two different node independent paths. Thus it only guarantees an strict lower bound
on node connectivity.

Note that the authors propose a further refinement, losing accuracy and gaining speed, which is not implemented
yet.

See also:

`all_pairs_node_connectivity()`, `node_connectivity()`

http://eclectic.ss.uci.edu/~drwhite/working.pdf
References

node_connectivity

node_connectivity \((G, s=None, t=None)\)

Returns an approximation for node connectivity for a graph or digraph \(G\).

Node connectivity is equal to the minimum number of nodes that must be removed to disconnect \(G\) or render it trivial. By Menger’s theorem, this is equal to the number of node independent paths (paths that share no nodes other than source and target).

If source and target nodes are provided, this function returns the local node connectivity: the minimum number of nodes that must be removed to break all paths from source to target in \(G\).

This algorithm is based on a fast approximation that gives an strict lower bound on the actual number of node independent paths between two nodes \(^3\). It works for both directed and undirected graphs.

Parameters

- \(G\) \((\text{NetworkX graph})\) – Undirected graph
- \(s\) \((\text{node})\) – Source node. Optional. Default value: None.
- \(t\) \((\text{node})\) – Target node. Optional. Default value: None.

Returns \(K\) – Node connectivity of \(G\), or local node connectivity if source and target are provided.

Return type integer

Examples

```python
>>> # Platonic icosahedral graph is 5-node-connected
>>> from networkx.algorithms import approximation as approx
>>> G = nx.icosahedral_graph()
>>> approx.node_connectivity(G)
5
```

Notes

This algorithm \(^1\) finds node independents paths between two nodes by computing their shortest path using BFS, marking the nodes of the path found as ‘used’ and then searching other shortest paths excluding the nodes marked as used until no more paths exist. It is not exact because a shortest path could use nodes that, if the path were longer, may belong to two different node independent paths. Thus it only guarantees an strict lower bound on node connectivity.

See also:

all_pairs_node_connectivity(), local_node_connectivity()

References

4.1.2 K-components

Fast approximation for k-component structure

\textbf{k_components}(G[, min_density]) Returns the approximate k-component structure of a graph G.

\textbf{k_components}(G, min_density=0.95) Returns the approximate k-component structure of a graph G.

A \(k\)-component is a maximal subgraph of a graph G that has, at least, node connectivity \(k\): we need to remove at least \(k\) nodes to break it into more components. \(k\)-components have an inherent hierarchical structure because they are nested in terms of connectivity: a connected graph can contain several 2-components, each of which can contain one or more 3-components, and so forth.

This implementation is based on the fast heuristics to approximate the \(k\)-component structure of a graph \(^4\). Which, in turn, is based on a fast approximation algorithm for finding good lower bounds of the number of node independent paths between two nodes \(^5\).

\begin{itemize}
 \item \(G\) (\textit{NetworkX graph}) – Undirected graph
 \item \textit{min_density} (\textit{Float}) – Density relaxation threshold. Default value 0.95
\end{itemize}

\textbf{Returns} \textbf{k_components} – Dictionary with connectivity level \(k\) as key and a list of sets of nodes that form a \(k\)-component of level \(k\) as values.

\textbf{Return type} \textbf{dict}

\textbf{Examples}

\begin{verbatim}
>>> # Petersen graph has 10 nodes and it is triconnected, thus all
>>> # nodes are in a single component on all three connectivity levels
>>> from networkx.algorithms import approximation as apxa
>>> G = nx.petersen_graph()
>>> k_components = apxa.k_components(G)
\end{verbatim}

\textbf{Notes}

The logic of the approximation algorithm for computing the \(k\)-component structure \(^1\) is based on repeatedly applying simple and fast algorithms for \(k\)-cores and biconnected components in order to narrow down the number of pairs of nodes over which we have to compute White and Newman’s approximation algorithm for finding node independent paths \(^2\). More formally, this algorithm is based on Whitney’s theorem, which states an inclusion relation among node connectivity, edge connectivity, and minimum degree for any graph G. This theorem implies that every \(k\)-component is nested inside a \(k\)-edge-component, which in turn, is contained in a \(k\)-core. Thus, this algorithm computes node independent paths among pairs of nodes in each biconnected part of each \(k\)-core, and repeats this procedure for each \(k\) from 3 to the maximal core number of a node in the input graph.

Because, in practice, many nodes of the core of level \(k\) inside a bicomponent actually are part of a component of level \(k\), the auxiliary graph needed for the algorithm is likely to be very dense. Thus, we use a complement graph data structure (see \textit{AntiGraph}) to save memory. \textit{AntiGraph} only stores information of the edges that are

132 Chapter 4. Algorithms
not present in the actual auxiliary graph. When applying algorithms to this complement graph data structure, it behaves as if it were the dense version.

See also:

\texttt{k_components()}

References

4.1.3 Clique

Cliques.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{max_clique(G)}</td>
<td>Find the Maximum Clique</td>
</tr>
<tr>
<td>\texttt{clique_removal(G)}</td>
<td>Repeatedly remove cliques from the graph.</td>
</tr>
</tbody>
</table>

\texttt{max_clique(G)}

Find the Maximum Clique

Finds the $O(|V|/\log|V|)^2$ apx of maximum clique/independent set in the worst case.

Parameters \(G\) (\textit{NetworkX graph}) – Undirected graph

Returns

- \texttt{clique (set)} – The apx-maximum clique of the graph
- \texttt{Notes}
-
- \texttt{A clique in an undirected graph} \(G = (V, E)\) \texttt{is a subset of the vertex set} \(C \subseteq V\), such that for every two vertices in \(C\), there exists an edge
- connecting the two. \texttt{This is equivalent to saying that the subgraph}
- induced by \(C\) \texttt{is complete (in some cases, the term clique may also refer}
- to the subgraph).
- \texttt{A maximum clique is a clique of the largest possible size in a given graph.}
- \texttt{The clique number} \(\omega(G)\) \texttt{of a graph} \(G\) \texttt{is the number of}
- \texttt{vertices in a maximum clique in} \(G\). \texttt{The intersection number of}
- \texttt{\(G\) is the smallest number of cliques that together cover all edges of} \(G\).
- \texttt{http (en.wikipedia.org/wiki/Maximum_clique)}

References

\texttt{clique_removal}

\texttt{clique_removal(G)}

Repeatedly remove cliques from the graph.
Results in a $O(|V|/(\log |V|)^2)$ approximation of maximum clique & independent set. Returns the largest independent set found, along with found maximal cliques.

Parameters
- **G** (*NetworkX graph*) – Undirected graph

Returns
- **max_ind_cliques** – Maximal independent set and list of maximal cliques (sets) in the graph.

Return type (set, list) tuple

References

4.1.4 Clustering

average_clustering

```python
average_clustering(G[, trials])
```

Estimates the average clustering coefficient of G.

The local clustering of each node in G is the fraction of triangles that actually exist over all possible triangles in its neighborhood. The average clustering coefficient of a graph G is the mean of local clusterings.

This function finds an approximate average clustering coefficient for G by repeating n times (defined in trials) the following experiment: choose a node at random, choose two of its neighbors at random, and check if they are connected. The approximate coefficient is the fraction of triangles found over the number of trials 6.

Parameters
- **G** (*NetworkX graph*) –
- **trials** (*integer*) – Number of trials to perform (default 1000).

Returns
- **c** – Approximated average clustering coefficient.

Return type float

References

4.1.5 Dominating Set

Functions for finding node and edge dominating sets.

A ‘dominating set’[^1] for an undirected graph G with vertex set V and edge set E is a subset D of V such that every vertex not in D is adjacent to at least one member of D. An ‘edge dominating set’[^2] is a subset F of E such that every edge not in F is incident to an endpoint of at least one edge in F.

min_weighted_dominating_set

```python
min_weighted_dominating_set(G[, weight])
```

Returns a dominating set that approximates the minimum weight node dominating set.

min_edge_dominating_set

```python
min_edge_dominating_set(G)
```

Return minimum cardinality edge dominating set.

min_weighted_dominating_set

min_weighted_dominating_set \((G, \text{weight}=\text{None})\)

Returns a dominating set that approximates the minimum weight node dominating set.

Parameters

- **G** (NetworkX graph) – Undirected graph.
- **weight** (string) – The node attribute storing the weight of an edge. If provided, the node attribute with this key must be a number for each node. If not provided, each node is assumed to have weight one.

Returns **min_weight_dominating_set** – A set of nodes, the sum of whose weights is no more than \((\log w(V))w(V^*)\), where \(w(V)\) denotes the sum of the weights of each node in the graph and \(w(V^*)\) denotes the sum of the weights of each node in the minimum weight dominating set.

Return type set

Notes

This algorithm computes an approximate minimum weighted dominating set for the graph \(G\). The returned solution has weight \((\log w(V))w(V^*)\), where \(w(V)\) denotes the sum of the weights of each node in the graph and \(w(V^*)\) denotes the sum of the weights of each node in the minimum weight dominating set for the graph.

This implementation of the algorithm runs in \(O(m)\) time, where \(m\) is the number of edges in the graph.

References

min_edge_dominating_set

min_edge_dominating_set \((G)\)

Return minimum cardinality edge dominating set.

Parameters **G** (NetworkX graph) – Undirected graph

Returns **min_edge_dominating_set** – Returns a set of dominating edges whose size is no more than 2 * OPT.

Return type set

Notes

The algorithm computes an approximate solution to the edge dominating set problem. The result is no more than 2 * OPT in terms of size of the set. Runtime of the algorithm is \(O(|E|)\).

4.1.6 Independent Set

Independent Set

Independent set or stable set is a set of vertices in a graph, no two of which are adjacent. That is, it is a set \(I\) of vertices such that for every two vertices in \(I\), there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in \(I\). The size of an independent set is the number of vertices it contains.
A maximum independent set is a largest independent set for a given graph G and its size is denoted $\alpha(G)$. The problem of finding such a set is called the maximum independent set problem and is an NP-hard optimization problem. As such, it is unlikely that there exists an efficient algorithm for finding a maximum independent set of a graph.

Independent set algorithm is based on the following paper:

$\mathcal{O}\left(\frac{|V|}{(\log |V|)^2}\right)$ apx of maximum clique/independent set.

\begin{verbatim}
maximum_independent_set(G) Return an approximate maximum independent set.

Parameters
G (NetworkX graph) – Undirected graph

Returns
iset – The apx-maximum independent set

Return type
Set

Notes
Finds the $\mathcal{O}\left(\frac{|V|}{(\log |V|)^2}\right)$ apx of independent set in the worst case.

References

4.1.7 Matching

Graph Matching

Given a graph $G = (V,E)$, a matching M in G is a set of pairwise non-adjacent edges; that is, no two edges share a common vertex.

http://en.wikipedia.org/wiki/Matching_(graph_theory)

\begin{verbatim}
min_maximal_matching(G) Returns the minimum maximal matching of G.

Parameters
G (NetworkX graph) – Undirected graph

Returns
min_maximal_matching – Returns a set of edges such that no two edges share a common endpoint and every edge not in the set shares some common endpoint in the set. Cardinality will be $2*OPT$ in the worst case.

\end{verbatim}
\end{verbatim}
Return type set

Notes

The algorithm computes an approximate solution to the minimum maximal cardinality matching problem. The solution is no more than 2 * OPT in size. Runtime is $O(|E|)$.

References

4.1.8 Ramsey

Ramsey numbers.

<table>
<thead>
<tr>
<th><code>ramsey_R2(G)</code></th>
<th>Approximately computes the Ramsey number $R(2; s, t)$ for graph.</th>
</tr>
</thead>
</table>

ramsey_R2

`ramsey_R2 (G)`

Approximately computes the Ramsey number $R(2; s, t)$ for graph.

- **Parameters**
 - `G (NetworkX graph)` – Undirected graph
- **Returns**
 - `max_pair` – Maximum clique, Maximum independent set.
- **Return type**
 - (set, set) tuple

4.1.9 Vertex Cover

Vertex Cover

Given an undirected graph $G = (V, E)$ and a function w assigning nonnegative weights to its vertices, find a minimum weight subset of V such that each edge in E is incident to at least one vertex in the subset.

http://en.wikipedia.org/wiki/Vertex_cover

<table>
<thead>
<tr>
<th><code>min_weighted_vertex_cover(G[, weight])</code></th>
<th>2-OPT Local Ratio for Minimum Weighted Vertex Cover</th>
</tr>
</thead>
</table>

min_weighted_vertex_cover

`min_weighted_vertex_cover (G, weight=None)`

2-OPT Local Ratio for Minimum Weighted Vertex Cover

Find an approximate minimum weighted vertex cover of a graph.

- **Parameters**
 - `G (NetworkX graph)` – Undirected graph
 - `weight` *(None or string, optional (default = None))* – If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1.
- **Returns**
 - `min_weighted_cover` – Returns a set of vertices whose weight sum is no more than 2 *
OPT.

Return type set

Notes

Local-Ratio algorithm for computing an approximate vertex cover. Algorithm greedily reduces the costs over edges and iteratively builds a cover. Worst-case runtime is $O(|E|)$.

References

4.2 Assortativity

4.2.1 Assortativity

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>degree_assortativity_coefficient(G[, x, y, ...])</code></td>
<td>Compute degree assortativity of graph.</td>
</tr>
<tr>
<td><code>attribute_assortativity_coefficient(G, attribute)</code></td>
<td>Compute assortativity for node attributes.</td>
</tr>
<tr>
<td><code>numeric_assortativity_coefficient(G, attribute)</code></td>
<td>Compute assortativity for numerical node attributes.</td>
</tr>
<tr>
<td><code>degree_pearson_correlation_coefficient(G[, ...])</code></td>
<td>Compute degree assortativity of graph.</td>
</tr>
</tbody>
</table>

degree_assortativity_coefficient

`degree_assortativity_coefficient (G, x='out', y='in', weight=None, nodes=None)`
Compute degree assortativity of graph.

Assortativity measures the similarity of connections in the graph with respect to the node degree.

Parameters

- **G** *(NetworkX graph)*
- **x** *(string)* – The degree type for source node (directed graphs only).
- **y** *(string)* – The degree type for target node (directed graphs only).
- **weight** *(string or None, optional (default=None)) –* The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.
- **nodes** *(list or iterable (optional))* – Compute degree assortativity only for nodes in container. The default is all nodes.

Returns **r** – Assortativity of graph by degree.

Return type float

Examples

```python
>>> G=nx.path_graph(4)
>>> r=nx.degree_assortativity_coefficient(G)
```
>>> print("%.3f"%r)
-0.5

See also:
`attribute_assortativity_coefficient()`, `numeric_assortativity_coefficient()`,
`neighbor_connectivity()`, `degree_mixing_dict()`, `degree_mixing_matrix()`

Notes

This computes Eq. (21) in Ref. 7, where e is the joint probability distribution (mixing matrix) of the degrees. If G is directed than the matrix e is the joint probability of the user-specified degree type for the source and target.

References

attribute_assortativity_coefficient

`attribute_assortativity_coefficient(G, attribute, nodes=None)`

Compute assortativity for node attributes.

Assortativity measures the similarity of connections in the graph with respect to the given attribute.

Parameters

- `G` *(NetworkX graph)*
- `attribute` *(string)* – Node attribute key
- `nodes` *(list or iterable (optional)*) – Compute attribute assortativity for nodes in container. The default is all nodes.

Returns `r` – Assortativity of graph for given attribute

Return type `float`

Examples

```python
>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],color='red')
>>> G.add_nodes_from([2,3],color='blue')
>>> G.add_edges_from(((0,1),(2,3)))
>>> print(nx.attribute_assortativity_coefficient(G,'color'))
1.0
```

Notes

This computes Eq. (2) in Ref. 8, trace(M)-sum(M))/(1-sum(M), where M is the joint probability distribution (mixing matrix) of the specified attribute.

References

numeric_assortativity_coefficient

d numeric_assortativity_coefficient \((G, \text{attribute}, \text{nodes}=\text{None}) \)
Compute assortativity for numerical node attributes.

Assortativity measures the similarity of connections in the graph with respect to the given numeric attribute.

Parameters

- G (NetworkX graph) –
- attribute (string) – Node attribute key
- nodes (list or iterable (optional)) – Compute numeric assortativity only for attributes of nodes in container. The default is all nodes.

Returns r – Assortativity of graph for given attribute

Return type float

Examples

```python
>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],size=2)
>>> G.add_nodes_from([2,3],size=3)
>>> G.add_edges_from([(0,1),(2,3)])
>>> print(nx.numeric_assortativity_coefficient(G,'size'))
1.0
```

Notes

This computes Eq. (21) in Ref. ⁹, for the mixing matrix of of the specified attribute.

References

degree_pearson_correlation_coefficient

d degree_pearson_correlation_coefficient \((G, x=\text{‘out’}, y=\text{‘in’}, \text{weight=\text{None}, nodes=\text{None}}) \)
Compute degree assortativity of graph.

Assortativity measures the similarity of connections in the graph with respect to the node degree.

This is the same as degree_assortativity_coefficient but uses the potentially faster scipy.stats.pearsonr function.

Parameters

- G (NetworkX graph) –
- x (string ‘in’, ‘out’) – The degree type for source node (directed graphs only).
- y (string ‘in’, ‘out’) – The degree type for target node (directed graphs only).
- weight (string or None, optional (default=\text{None})) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

• **nodes** (list or iterable (optional)) – Compute pearson correlation of degrees only for specified nodes. The default is all nodes.

Returns r – Assortativity of graph by degree.

Return type float

Examples

```python
>>> G=nx.path_graph(4)
>>> r=nx.degree_pearson_correlation_coefficient(G)
>>> print("%.3f"%r)
-0.5
```

Notes

This calls scipy.stats.pearsonr.

References

4.2.2 Average neighbor degree

```python
average_neighbor_degree(G[, source, target, ...]) Returns the average degree of the neighborhood of each node.
```

average_neighbor_degree (G, source='out', target='out', nodes=None, weight=None) Returns the average degree of the neighborhood of each node.

The average degree of a node i is

$$k_{nn,i} = \frac{1}{|N(i)|} \sum_{j \in N(i)} k_j$$

where $N(i)$ are the neighbors of node i and k_j is the degree of node j which belongs to $N(i)$. For weighted graphs, an analogous measure can be defined 10,

$$k_{nn,i}^w = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j$$

where s_i is the weighted degree of node i, w_{ij} is the weight of the edge that links i and j and $N(i)$ are the neighbors of node i.

Parameters

- **G** (NetworkX graph) –
- **source** (string ("in"|"out"): Directed graphs only. Use “in”- or “out”-degree for source node.
- **target** (string ("in"|"out"): Directed graphs only. Use “in”- or “out”-degree for target node.

• **nodes** *(list or iterable, optional)* – Compute neighbor degree for specified nodes. The default is all nodes in the graph.

weight *([string or None, optional (default=None)])* The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns
- **d** – A dictionary keyed by node with average neighbors degree value.

Return type *dict*

Examples

```python
>>> G=nx.path_graph(4)
>>> G.edge[0][1]['weight'] = 5
>>> G.edge[2][3]['weight'] = 3

>>> nx.average_neighbor_degree(G)
{0: 2.0, 1: 1.5, 2: 1.5, 3: 2.0}

>>> nx.average_neighbor_degree(G, weight='weight')
{0: 2.0, 1: 1.1666666666666667, 2: 1.25, 3: 2.0}

>>> G=nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> nx.average_neighbor_degree(G, source='in', target='in')
{0: 1.0, 1: 1.0, 2: 1.0, 3: 0.0}

>>> nx.average_neighbor_degree(G, source='out', target='out')
{0: 1.0, 1: 1.0, 2: 0.0, 3: 0.0}
```

Notes

For directed graphs you can also specify in-degree or out-degree by passing keyword arguments.

See also:
- `average_degree_connectivity()`

References

4.2.3 **Average degree connectivity**

```python
average_degree_connectivity(G[, source, ...]) Compute the average degree connectivity of graph.
k_nearest_neighbors(G[, source, target, ...]) Compute the average degree connectivity of graph.
```

average_degree_connectivity

```python
average_degree_connectivity (G, source='in+out', target='in+out', nodes=None, weight=None)
```

Compute the average degree connectivity of graph.

The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted graphs, an analogous measure can be computed using the weighted average neighbors degree defined in [11], for

a node i, as:

$$k_{nn,i}^w = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j$$

where s_i is the weighted degree of node i, w_{ij} is the weight of the edge that links i and j, and $N(i)$ are the neighbors of node i.

Parameters

- G *(NetworkX graph)*
- `source` *("in"|"out"|"in+out" (default: "in+out"))* – Directed graphs only. Use “in”- or “out”-degree for source node.
- `target` *("in"|"out"|"in+out" (default: "in+out"))* – Directed graphs only. Use “in”- or “out”-degree for target node.
- `nodes` *(list or iterable (optional))* – Compute neighbor connectivity for these nodes. The default is all nodes.
- `weight` *(string or None, optional (default=None))* – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns d – A dictionary keyed by degree k with the value of average connectivity.

Return type *dict*

Examples

```python
>>> G=nx.path_graph(4)
>>> G.edge[1][2][’weight’] = 3
>>> nx.k_nearest_neighbors(G)
{1: 2.0, 2: 1.5}
>>> nx.k_nearest_neighbors(G, weight=’weight’)
{1: 2.0, 2: 1.75}
```

See also:

neighbors_average_degree()

Notes

This algorithm is sometimes called “k nearest neighbors” and is also available as `k_nearest_neighbors`.

References

k_nearest_neighbors

k_nearest_neighbors *(G, source=’in+out’, target=’in+out’, nodes=None, weight=None)*

Compute the average degree connectivity of graph.

The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted graphs, an analogous measure can be computed using the weighted average neighbors degree defined in \(^{12}\), for

a node i, as:

$$k^w_{nn,i} = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j$$

where s_i is the weighted degree of node i, w_{ij} is the weight of the edge that links i and j, and $N(i)$ are the neighbors of node i.

Parameters

- **G** (*NetworkX graph*)
- **source** (*"in"|"out"|"in+out" (default:"in+out")) – Directed graphs only. Use “in”- or “out”-degree for source node.
- **target** (*"in"|"out"|"in+out" (default:"in+out")) – Directed graphs only. Use “in”- or “out”-degree for target node.
- **nodes** (*list or iterable (optional)*) – Compute neighbor connectivity for these nodes. The default is all nodes.
- **weight** (*string or None, optional (default=None)*) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns d – A dictionary keyed by degree k with the value of average connectivity.

Return type dict

Examples

```python
>>> G=nx.path_graph(4)
>>> G.edge[1][2]["weight"] = 3
>>> nx.k_nearest_neighbors(G)
{1: 2.0, 2: 1.5}
>>> nx.k_nearest_neighbors(G, weight='weight')  
{1: 2.0, 2: 1.75}
```

See also:

neighbors_average_degree()

Notes

This algorithm is sometimes called “k nearest neighbors” and is also available as `k_nearest_neighbors`.

References

4.2.4 Mixing

<table>
<thead>
<tr>
<th>function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>attribute_mixing_matrix(G, attribute, ...)</td>
<td>Return mixing matrix for attribute.</td>
</tr>
<tr>
<td>degree_mixing_matrix(G, x, y, weight, ...)</td>
<td>Return mixing matrix for attribute.</td>
</tr>
<tr>
<td>degree_mixing_dict(G, x, y, weight, nodes, ...)</td>
<td>Return dictionary representation of mixing matrix for degree.</td>
</tr>
<tr>
<td>attribute_mixing_dict(G, attribute, nodes, ...)</td>
<td>Return dictionary representation of mixing matrix for attribute.</td>
</tr>
</tbody>
</table>
attribute_mixing_matrix

attribute_mixing_matrix \((G, \text{attribute}, \text{nodes}=\text{None}, \text{mapping}=\text{None}, \text{normalized}=\text{True})\)

Return mixing matrix for attribute.

Parameters

- **G** *(graph)* – NetworkX graph object.
- **attribute** *(string)* – Node attribute key.
- **nodes** *(list or iterable (optional))* – Use only nodes in container to build the matrix. The default is all nodes.
- **mapping** *(dictionary, optional)* – Mapping from node attribute to integer index in matrix. If not specified, an arbitrary ordering will be used.
- **normalized** *(bool (default=False))* – Return counts if False or probabilities if True.

Returns **m** – Counts or joint probability of occurrence of attribute pairs.

Return type numpy array

degree_mixing_matrix

degree_mixing_matrix \((G, x='out', y='in', \text{weight}=\text{None}, \text{nodes}=\text{None}, \text{normalized}=\text{True})\)

Return mixing matrix for attribute.

Parameters

- **G** *(graph)* – NetworkX graph object.
- **x** *(string)* – The degree type for source node (directed graphs only).
- **y** *(string)* – The degree type for target node (directed graphs only).
- **nodes** *(list or iterable (optional))* – Build the matrix using only nodes in container. The default is all nodes.
- **weight** *(string or None, optional)* – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.
- **normalized** *(bool (default=False))* – Return counts if False or probabilities if True.

Returns **m** – Counts, or joint probability, of occurrence of node degree.

Return type numpy array

degree_mixing_dict

degree_mixing_dict \((G, x='out', y='in', \text{weight}=\text{None}, \text{nodes}=\text{None}, \text{normalized}=\text{False})\)

Return dictionary representation of mixing matrix for degree.

Parameters

- **G** *(graph)* – NetworkX graph object.
- **x** *(string)* – The degree type for source node (directed graphs only).
- **y** *(string)* – The degree type for target node (directed graphs only).

4.2. Assortativity
• **weight** *(string or None, optional (default=None))* – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node.

• **normalized** *(bool (default=False))* – Return counts if False or probabilities if True.

Returns

- Counts or joint probability of occurrence of degree pairs.

Return type

dictionary

attribute_mixing_dict

attribute_mixing_dict *(G, attribute, nodes=None, normalized=False)*

Return dictionary representation of mixing matrix for attribute.

Parameters

- **G** *(graph)* – NetworkX graph object.
- **attribute** *(string)* – Node attribute key.
- **nodes** *(list or iterable (optional))* – Unse nodes in container to build the dict. The default is all nodes.
- **normalized** *(bool (default=False))* – Return counts if False or probabilities if True.

Examples

```python
>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],color='red')
>>> G.add_nodes_from([2,3],color='blue')
>>> G.add_edge(1,3)
>>> d=nx.attribute_mixing_dict(G,'color')
>>> print(d['red']['blue'])
1
>>> print(d['blue']['red'])
# d symmetric for undirected graphs
1
```

Returns

- Counts or joint probability of occurrence of attribute pairs.

Return type
dictionary

4.3 Bipartite

This module provides functions and operations for bipartite graphs. Bipartite graphs \(B = (U, V, E) \) have two node sets \(U, V \) and edges in \(E \) that only connect nodes from opposite sets. It is common in the literature to use an spatial analogy referring to the two node sets as top and bottom nodes.

The bipartite algorithms are not imported into the networkx namespace at the top level so the easiest way to use them is with:

```python
>>> import networkx as nx
>>> from networkx.algorithms import bipartite
```

NetworkX does not have a custom bipartite graph class but the Graph() or DiGraph() classes can be used to represent bipartite graphs. However, you have to keep track of which set each node belongs to, and make sure that there is no
edge between nodes of the same set. The convention used in NetworkX is to use a node attribute named “bipartite” with values 0 or 1 to identify the sets each node belongs to.

For example:

```python
>>> B = nx.Graph()
>>> B.add_nodes_from([1,2,3,4], bipartite=0)  # Add the node attribute "bipartite"
>>> B.add_nodes_from(['a','b','c'], bipartite=1)
>>> B.add_edges_from(((1,'a'), (1,'b'), (2,'b'), (2,'c'), (3,'c'), (4,'a')))
```

Many algorithms of the bipartite module of NetworkX require, as an argument, a container with all the nodes that belong to one set, in addition to the bipartite graph B. If B is connected, you can find the node sets using a two-coloring algorithm:

```python
>>> nx.is_connected(B)
True
>>> bottom_nodes, top_nodes = bipartite.sets(B)
```

list(top_nodes) [1, 2, 3, 4] list(bottom_nodes) ['a', 'c', 'b']

However, if the input graph is not connected, there are more than one possible colorations. Thus, the following result is correct:

```python
>>> B.remove_edge(2,'c')
>>> nx.is_connected(B)
False
>>> bottom_nodes, top_nodes = bipartite.sets(B)
```

list(top_nodes) [1, 2, 4, 'c'] list(bottom_nodes) ['a', 3, 'b']

Using the “bipartite” node attribute, you can easily get the two node sets:

```python
>>> top_nodes = set(n for n,d in B.nodes(data=True) if d['bipartite']==0)
>>> bottom_nodes = set(B) - top_nodes
```

list(top_nodes) [1, 2, 4, 'c'] list(bottom_nodes) ['a', 3, 'b']

So you can easily use the bipartite algorithms that require, as an argument, a container with all nodes that belong to one node set:

```python
>>> print(round(bipartite.density(B, bottom_nodes),2))
0.42
>>> G = bipartite.projected_graph(B, top_nodes)
>>> G.edges()
[(1, 2), (1, 4)]
```

All bipartite graph generators in NetworkX build bipartite graphs with the “bipartite” node attribute. Thus, you can use the same approach:

```python
>>> RB = bipartite.random_graph(5, 7, 0.2)
>>> RB_top = set(n for n,d in RB.nodes(data=True) if d['bipartite']==0)
>>> RB_bottom = set(RB) - RB_top
>>> list(RB_top)
[0, 1, 2, 3, 4]
>>> list(RB_bottom)
[5, 6, 7, 8, 9, 10, 11]
```

For other bipartite graph generators see the bipartite section of Graph generators.
4.3.1 Basic functions

Bipartite Graph Algorithms

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>is_bipartite(G)</td>
<td>Returns True if graph G is bipartite, False if not.</td>
</tr>
<tr>
<td>is_bipartite_node_set(G, nodes)</td>
<td>Returns True if nodes and G/nodes are a bipartition of G.</td>
</tr>
<tr>
<td>sets(G)</td>
<td>Returns bipartite node sets of graph G.</td>
</tr>
<tr>
<td>color(G)</td>
<td>Returns a two-coloring of the graph.</td>
</tr>
<tr>
<td>density(B, nodes)</td>
<td>Return density of bipartite graph B.</td>
</tr>
<tr>
<td>degrees(B, nodes[, weight])</td>
<td>Return the degrees of the two node sets in the bipartite graph B.</td>
</tr>
</tbody>
</table>

is_bipartite

is_bipartite(G)

Returns True if graph G is bipartite, False if not.

Parameters

- **G** (*NetworkX graph*)

Examples

```python
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> print(bipartite.is_bipartite(G))
True
```

See also:

color(), is_bipartite_node_set()

is_bipartite_node_set

is_bipartite_node_set(G, nodes)

Returns True if nodes and G/nodes are a bipartition of G.

Parameters

- **G** (*NetworkX graph*)
- **nodes** (*list or container*) – Check if nodes are a one of a bipartite set.

Examples

```python
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X = set([1,3])
>>> bipartite.is_bipartite_node_set(G,X)
True
```

Notes

For connected graphs the bipartite sets are unique. This function handles disconnected graphs.
sets

sets(G)
Returns bipartite node sets of graph G.
 Raises an exception if the graph is not bipartite.

Parameters G (NetworkX graph) –
Returns (X,Y) – One set of nodes for each part of the bipartite graph.
Return type two-tuple of sets

Examples

```python
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X, Y = bipartite.sets(G)
>>> list(X)
[0, 2]
>>> list(Y)
[1, 3]
```

See also:
color()

color

color(G)
Returns a two-coloring of the graph.
 Raises an exception if the graph is not bipartite.

Parameters G (NetworkX graph) –
Returns color – A dictionary keyed by node with a 1 or 0 as data for each node color.
Return type dictionary
 Raises NetworkXError if the graph is not two-colorable.

Examples

```python
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> c = bipartite.color(G)
>>> print(c)
{0: 1, 1: 0, 2: 1, 3: 0}
```

You can use this to set a node attribute indicating the bipartite set:

```python
>>> nx.set_node_attributes(G, 'bipartite', c)
>>> print(G.node[0]['bipartite'])
1
>>> print(G.node[1]['bipartite'])
0
```
density

density\((B, \text{nodes})\)

Return density of bipartite graph B.

Parameters

- G (*NetworkX graph*)
- \text{nodes} (*list or container*) – Nodes in one set of the bipartite graph.

Returns

- d – The bipartite density

Return type

float

Examples

```python
>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> X=set([0,1,2])
>>> bipartite.density(G,X)
1.0
>>> Y=set([3,4])
>>> bipartite.density(G,Y)
1.0
```

See also:

color()

degrees

degrees\((B, \text{nodes}, \text{weight=\text{None}})\)

Return the degrees of the two node sets in the bipartite graph B.

Parameters

- \text{weight} (*string or \text{None}, optional (default=None)*)

- \text{nodes} (*list or container*) – Nodes in one set of the bipartite graph.

** Returns**

- (degX, degY) – The degrees of the two bipartite sets as dictionaries keyed by node.

Return type

tuple of dictionaries

Examples

```python
>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> Y=set([3,4])
>>> degX,degY=bipartite.degrees(G,Y)
>>> degX
{0: 2, 1: 2, 2: 2}
```
4.3.2 Matching

Provides functions for computing a maximum cardinality matching in a bipartite graph.

If you don’t care about the particular implementation of the maximum matching algorithm, simply use the `maximum_matching()` function. If you do care, you can import one of the named maximum matching algorithms directly.

For example, to find a maximum matching in the complete bipartite graph with two vertices on the left and three vertices on the right:

```python
>>> import networkx as nx
>>> G = nx.complete_bipartite_graph(2, 3)
>>> left, right = nx.bipartite.sets(G)
>>> list(left)
[0, 1]
>>> list(right)
[2, 3, 4]
>>> nx.bipartite.maximum_matching(G)
{0: 2, 1: 3, 2: 0, 3: 1}
```

The dictionary returned by `maximum_matching()` includes a mapping for vertices in both the left and right vertex sets.

eppstein_matching

`eppstein_matching(G)` Returns the maximum cardinality matching of the bipartite graph G.

Parameters

- G (NetworkX graph) – Undirected bipartite graph

Returns

- `matches` – The matching is returned as a dictionary, `matches`, such that `matches[v] == w` if node v is matched to node w. Unmatched nodes do not occur as a key in `mate`.

Return type

- dictionary

Notes

This function is implemented with David Eppstein’s version of the algorithm Hopcroft–Karp algorithm (see `hopcroft_karp_matching()`), which originally appeared in the Python Algorithms and Data Structures library (PADS).

See also:

`hopcroft_karp_matching()`
hopcroft_karp_matching

hopcroft_karp_matching(G)
Returns the maximum cardinality matching of the bipartite graph G.

Parameters G (NetworkX graph) – Undirected bipartite graph

Returns
matches –
The matching is returned as a dictionary, matches, such that matches[v] == w if node v is matched to node w. Unmatched nodes do not occur as a key in mate.

Return type dictionary

Notes
This function is implemented with the Hopcroft–Karp matching algorithm for bipartite graphs.

See also:
eppstein_matching()

References
to_vertex_cover

to_vertex_cover(G, matching)
Returns the minimum vertex cover corresponding to the given maximum matching of the bipartite graph G.

Parameters
• G (NetworkX graph) – Undirected bipartite graph
• matching (dictionary) – A dictionary whose keys are vertices in G and whose values are the distinct neighbors comprising the maximum matching for G, as returned by, for example, maximum_matching(). The dictionary must represent the maximum matching.

Returns
vertex_cover –
The minimum vertex cover in G.

Return type set

Notes
This function is implemented using the procedure guaranteed by Konig’s theorem, which proves an equivalence between a maximum matching and a minimum vertex cover in bipartite graphs.

Since a minimum vertex cover is the complement of a maximum independent set for any graph, one can compute the maximum independent set of a bipartite graph this way:

>>> import networkx as nx
>>> G = nx.complete_bipartite_graph(2, 3)
>>> matching = nx.bipartite.maximum_matching(G)
>>> vertex_cover = nx.bipartite.to_vertex_cover(G, matching)
>>> independent_set = set(G) - vertex_cover
>>> print(list(independent_set))
[2, 3, 4]

4.3.3 Matrix

Biadjacency matrices

```python
biadjacency_matrix(G, row_order[, ...])
```
Return the biadjacency matrix of the bipartite graph G.

```python
from_biadjacency_matrix(A[, create_using, ...])
```
Creates a new bipartite graph from a biadjacency matrix given as a SciPy sparse matrix.

biadjacency_matrix

biadjacency_matrix (G, row_order, column_order=None, dtype=None, weight='weight', format='csr')
Return the biadjacency matrix of the bipartite graph G.

Let $G = (U, V, E)$ be a bipartite graph with node sets $U = u_1, ..., u_r$ and $V = v_1, ..., v_s$. The biadjacency matrix B is the $r \times s$ matrix in which $b_{i,j} = 1$ if, and only if, $(u_i, v_j) \in E$. If the parameter weight is not None and matches the name of an edge attribute, its value is used instead of 1.

Parameters

- **G (graph)** – A NetworkX graph
- **row_order (list of nodes)** – The rows of the matrix are ordered according to the list of nodes.
- **column_order (list, optional)** – The columns of the matrix are ordered according to the list of nodes. If column_order is None, then the ordering of columns is arbitrary.
- **dtype (NumPy data-type, optional)** – A valid NumPy dtype used to initialize the array. If None, then the NumPy default is used.
- **weight (string or None, optional (default='weight'))** – The edge data key used to provide each value in the matrix. If None, then each edge has weight 1.
- **format (str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'})** – The type of the matrix to be returned (default ‘csr’). For some algorithms different implementations of sparse matrices can perform better. See 14 for details.

Returns

- **M** – Biadjacency matrix representation of the bipartite graph G.

Return type

SciPy sparse matrix

Notes

No attempt is made to check that the input graph is bipartite.

For directed bipartite graphs only successors are considered as neighbors. To obtain an adjacency matrix with ones (or weight values) for both predecessors and successors you have to generate two biadjacency matrices where the rows of one of them are the columns of the other, and then add one to the transpose of the other.

See also:

- adjacency_matrix(), from_biadjacency_matrix()

from_biadjacency_matrix

from_biadjacency_matrix (A, create_using=None, edge_attribute='weight')

Creates a new bipartite graph from a biadjacency matrix given as a SciPy sparse matrix.

Parameters

• A (scipy sparse matrix) – A biadjacency matrix representation of a graph
• create_using (NetworkX graph) – Use specified graph for result. The default is Graph()
• edge_attribute (string) – Name of edge attribute to store matrix numeric value. The data will have the same type as the matrix entry (int, float, (real,imag)).

Notes

The nodes are labeled with the attribute bipartite set to an integer 0 or 1 representing membership in part 0 or part 1 of the bipartite graph.

If create_using is an instance of networkx.MultiGraph or networkx.MultiDiGraph and the entries of A are of type int, then this function returns a multigraph (of the same type as create_using) with parallel edges. In this case, edge_attribute will be ignored.

See also:

biadjacency_matrix(), from_numpy_matrix()

References

4.3.4 Projections

One-mode (unipartite) projections of bipartite graphs.

projected_graph

projected_graph (B, nodes[, multigraph])

Returns the projection of B onto one of its node sets.

weighted_projected_graph

weighted_projected_graph (B, nodes[, ratio])

Returns a weighted projection of B onto one of its node sets.

collaboration_weighted_projected_graph

collaboration_weighted_projected_graph (B, nodes)

Newman’s weighted projection of B onto one of its node sets.

overlap_weighted_projected_graph

overlap_weighted_projected_graph (B, nodes[, ...])

Overlap weighted projection of B onto one of its node sets.

generic_weighted_projected_graph

generic_weighted_projected_graph (B, nodes[, ...])

Weighted projection of B with a user-specified weight function.

projected_graph

projected_graph (B, nodes, multigraph=False)

Returns the projection of B onto one of its node sets.

Returns the graph G that is the projection of the bipartite graph B onto the specified nodes. They retain their attributes and are connected in G if they have a common neighbor in B.

Parameters

• B (NetworkX graph) – The input graph should be bipartite.
• **nodes** *(list or iterable)* – Nodes to project onto (the “bottom” nodes).
• **multigraph** *(bool (default=False))* – If True return a multigraph where the multiple edges represent multiple shared neighbors. They edge key in the multigraph is assigned to the label of the neighbor.

Returns Graph – A graph that is the projection onto the given nodes.

Return type NetworkX graph or multigraph

Examples

```python
>>> from networkx.algorithms import bipartite

>>> B = nx.path_graph(4)
>>> G = bipartite.projected_graph(B, [1,3])
>>> print(G.nodes())
[1, 3]
>>> print(G.edges())
[(1, 3)]
```

If nodes a, and b are connected through both nodes 1 and 2 then building a multigraph results in two edges in the projection onto $[a,'b']$:

```python
>>> B = nx.Graph()
>>> B.add_edges_from([(a, 1), (b, 1), (a, 2), (b, 2)])
>>> G = bipartite.projected_graph(B, ['a', 'b'], multigraph=True)
>>> print(sorted((u,v) for u,v in G.edges()))
[['a', 'b'], ['a', 'b']]
```

No attempt is made to verify that the input graph B is bipartite. Returns a simple graph that is the projection of the bipartite graph B onto the set of nodes given in list nodes. If multigraph=True then a multigraph is returned with an edge for every shared neighbor.

Directed graphs are allowed as input. The output will also then be a directed graph with edges if there is a directed path between the nodes.

The graph and node properties are (shallow) copied to the projected graph.

See also:

- `is_bipartite()`, `is_bipartite_node_set()`, `sets()`, `weighted_projected_graph()`, `collaboration_weighted_projected_graph()`, `overlap_weighted_projected_graph()`, `generic_weighted_projected_graph()`

weighted_projected_graph

`weighted_projected_graph(B, nodes, ratio=False)`

Returns a weighted projection of B onto one of its node sets.

The weighted projected graph is the projection of the bipartite network B onto the specified nodes with weights representing the number of shared neighbors or the ratio between actual shared neighbors and possible shared neighbors if ratio=True. The nodes retain their attributes and are connected in the resulting graph if they have an edge to a common node in the original graph.

Parameters

- **B** *(NetworkX graph)* – The input graph should be bipartite.

• **nodes** (*list or iterable*) – Nodes to project onto (the “bottom” nodes).

• **ratio** (*Bool (default=False)*) – If True, edge weight is the ratio between actual shared neighbors and possible shared neighbors. If False, edges weight is the number of shared neighbors.

Returns Graph – A graph that is the projection onto the given nodes.

Return type NetworkX graph

Examples

```python
>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(4)
>>> G = bipartite.weighted_projected_graph(B, [1,3])
>>> print(G.nodes())
[1, 3]
>>> print(G.edges(data=True))
[(1, 3, {'weight': 1})]
>>> G = bipartite.weighted_projected_graph(B, [1,3], ratio=True)
>>> print(G.edges(data=True))
[(1, 3, {'weight': 0.5})]
```

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph.

See also:

`is_bipartite()`, `is_bipartite_node_set()`, `sets()`, `collaboration_weighted_projected_graph()`, `overlap_weighted_projected_graph()`, `generic_weighted_projected_graph()`, `projected_graph()`

References

collaboration_weighted_projected_graph

collaboration_weighted_projected_graph (*B, nodes*)

Newman’s weighted projection of *B* onto one of its node sets.

The collaboration weighted projection is the projection of the bipartite network *B* onto the specified nodes with weights assigned using Newman’s collaboration model ¹⁶:

\[
u_{v,u} = \sum_k \frac{\delta_v^w \delta_u^k}{k_w - 1}\]

where *v* and *u* are nodes from the same bipartite node set, and *w* is a node of the opposite node set. The value *k*_w is the degree of node *w* in the bipartite network and *δ_v^w* is 1 if node *v* is linked to node *w* in the original bipartite graph or 0 otherwise.

The nodes retain their attributes and are connected in the resulting graph if have an edge to a common node in the original bipartite graph.

Parameters

• **B** (*NetworkX graph*) – The input graph should be bipartite.

• **nodes** (*list or iterable*) – Nodes to project onto (the “bottom” nodes).

Returns Graph – A graph that is the projection onto the given nodes.

Return type NetworkX graph

Examples

```python
>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(5)
>>> B.add_edge(1,5)
>>> G = bipartite.collaboration_weighted_projected_graph(B, [0, 2, 4, 5])
>>> print(G.nodes())
[0, 2, 4, 5]
>>> for edge in G.edges(data=True): print(edge)
...
(0, 2, {'weight': 0.5})
(0, 5, {'weight': 0.5})
(2, 4, {'weight': 1.0})
(2, 5, {'weight': 0.5})
```

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph.

See also:

- is_bipartite()
- is_bipartite_node_set()
- sets()
- weighted_projected_graph()
- overlap_weighted_projected_graph()
- generic_weighted_projected_graph()
- projected_graph()

References

overlap_weighted_projected_graph

overlap_weighted_projected_graph ($B, \text{nodes, jaccard}=\text{True}$)

Overlap weighted projection of B onto one of its node sets.

The overlap weighted projection is the projection of the bipartite network B onto the specified nodes with weights representing the Jaccard index between the neighborhoods of the two nodes in the original bipartite network:

$$w_{v,u} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}$$

or if the parameter ‘jaccard’ is False, the fraction of common neighbors by minimum of both nodes degree in the original bipartite graph:

$$w_{v,u} = \frac{|N(u) \cap N(v)|}{\min(|N(u)|, |N(v)|)}$$

The nodes retain their attributes and are connected in the resulting graph if have an edge to a common node in the original bipartite graph.

Parameters

- B (**NetworkX graph**) – The input graph should be bipartite.
- nodes (**list or iterable**) – Nodes to project onto (the “bottom” nodes).

• **jaccard** *(Bool (default=True)) – Returns Graph – A graph that is the projection onto the given nodes.*

Return type NetworkX graph

Examples

```python
>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(5)
>>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4])
>>> print(G.nodes())
[0, 2, 4]
>>> print(G.edges(data=True))
[(0, 2, {'weight': 0.5}), (2, 4, {'weight': 0.5})]
>>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4], jaccard=False)
>>> print(G.edges(data=True))
[(0, 2, {'weight': 1.0}), (2, 4, {'weight': 1.0})]
```

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph.

See also:

* is_bipartite(), is_bipartite_node_set(), sets(), *weighted_projected_graph()*, *collaboration_weighted_projected_graph()*, *generic_weighted_projected_graph()*, *projected_graph()*

References

generic_weighted_projected_graph

generic_weighted_projected_graph *(B, nodes, weight_function=None)*

Weighted projection of B with a user-specified weight function.

The bipartite network B is projected on to the specified nodes with weights computed by a user-specified function. This function must accept as a parameter the neighborhood sets of two nodes and return an integer or a float.

The nodes retain their attributes and are connected in the resulting graph if they have an edge to a common node in the original graph.

Parameters

- **B (NetworkX graph)** – The input graph should be bipartite.
- **nodes (list or iterable)** – Nodes to project onto (the “bottom” nodes).
- **weight_function (function)** – This function must accept as parameters the same input graph that this function, and two nodes; and return an integer or a float. The default function computes the number of shared neighbors.

Returns Graph – A graph that is the projection onto the given nodes.

Return type NetworkX graph
Examples

```python
>>> from networkx.algorithms import bipartite
>>> # Define some custom weight functions
>>> def jaccard(G, u, v):
...    unbrs = set(G[u])
...    vnbrs = set(G[v])
...    return float(len(unbrs & vnbrs)) / len(unbrs | vnbrs)
...

>>> def my_weight(G, u, v, weight='weight'):
...    w = 0
...    for nbr in set(G[u]) & set(G[v]):
...        w += G.edge[u][nbr].get(weight, 1) + G.edge[v][nbr].get(weight, 1)
...    return w
...

>>> # A complete bipartite graph with 4 nodes and 4 edges
>>> B = nx.complete_bipartite_graph(2,2)
>>> # Add some arbitrary weight to the edges
>>> for i,(u,v) in enumerate(B.edges()):
...    B.edge[u][v]['weight'] = i + 1
>>> for edge in B.edges(data=True):
...    print(edge)
...(0, 2, {'weight': 1})
...(0, 3, {'weight': 2})
...(1, 2, {'weight': 3})
...(1, 3, {'weight': 4})

>>> # Without specifying a function, the weight is equal to # shared partners
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1])
>>> print(G.edges(data=True))
[[(0, 1, {'weight': 2})]]

>>> # To specify a custom weight function use the weight_function parameter
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=jaccard)
>>> print(G.edges(data=True))
[[(0, 1, {'weight': 1.0})]]

>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=my_weight)
>>> print(G.edges(data=True))
[[(0, 1, {'weight': 10})]]
```

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph.

See also:

is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(),
collaboration_weighted_projected_graph(), overlap_weighted_projected_graph(),
projected_graph()

4.3.5 Spectral

Spectral bipartivity measure.

```
spectral_bipartivity(G[, nodes, weight])  Returns the spectral bipartivity.
```
spectral_bipartivity

spectral_bipartivity *(G, nodes=None, weight='weight')*

Returns the spectral bipartivity.

Parameters

- `G` *(NetworkX graph)*
- `nodes` *(list or container optional (default is all nodes))* – Nodes to return value of spectral bipartivity contribution.
- `weight` *(string or None optional (default = 'weight'))* – Edge data key to use for edge weights. If None, weights set to 1.

Returns `sb` – A single number if the keyword nodes is not specified, or a dictionary keyed by node with the spectral bipartivity contribution of that node as the value.

Return type float or dict

Examples

```python
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> bipartite.spectral_bipartivity(G)
1.0
```

Notes

This implementation uses Numpy (dense) matrices which are not efficient for storing large sparse graphs.

See also:

color()

References

4.3.6 Clustering

<table>
<thead>
<tr>
<th>function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clustering(G[, nodes, mode])</code></td>
<td>Compute a bipartite clustering coefficient for nodes.</td>
</tr>
<tr>
<td><code>average_clustering(G[, nodes, mode])</code></td>
<td>Compute the average bipartite clustering coefficient.</td>
</tr>
<tr>
<td><code>latapy_clustering(G[, nodes, mode])</code></td>
<td>Compute a bipartite clustering coefficient for nodes.</td>
</tr>
<tr>
<td><code>robins_alexander_clustering(G)</code></td>
<td>Compute the bipartite clustering of G.</td>
</tr>
</tbody>
</table>

clustering

clustering *(G, nodes=None, mode='dot')*

Compute a bipartite clustering coefficient for nodes.
The bipartite clustering coefficient is a measure of local density of connections defined as:

\[
c_u = \frac{\sum_{v \in N(N(u))} c_{uv}}{|N(N(u))|}
\]

where \(N(N(u))\) are the second order neighbors of \(u\) in \(G\) excluding \(u\), and \(c_{uv}\) is the pairwise clustering coefficient between nodes \(u\) and \(v\).

The mode selects the function for \(c_{uv}\) which can be:

dot:

\[
c_{uv} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}
\]

min:

\[
c_{uv} = \frac{|N(u) \cap N(v)|}{\min(|N(u)|, |N(v)|)}
\]

max:

\[
c_{uv} = \frac{|N(u) \cap N(v)|}{\max(|N(u)|, |N(v)|)}
\]

Parameters

- \(G\) (graph) – A bipartite graph
- \(nodes\) (list or iterable (optional)) – Compute bipartite clustering for these nodes. The default is all nodes in \(G\).
- \(mode\) (string) – The pairwise bipartite clustering method to be used in the computation. It must be “dot”, “max”, or “min”.

Returns clustering – A dictionary keyed by node with the clustering coefficient value.

Return type dictionary

Examples

```python
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)  # path graphs are bipartite
>>> c = bipartite.clustering(G)
>>> c[0]
0.5
>>> c = bipartite.clustering(G, mode='min')
>>> c[0]
1.0
```

See also:

- `robins_alexander_clustering()`, `square_clustering()`, `average_clustering()`

average_clustering

average_clustering \((G, \text{nodes}=\text{None}, \text{mode}='\text{dot}')\)

Compute the average bipartite clustering coefficient.

A clustering coefficient for the whole graph is the average,

\[C = \frac{1}{n} \sum_{v \in G} c_v, \]

where \(n\) is the number of nodes in \(G\).

Similar measures for the two bipartite sets can be defined \(^{19}\)

\[C_X = \frac{1}{|X|} \sum_{v \in X} c_v, \]

where \(X\) is a bipartite set of \(G\).

Parameters

- \(G\) (graph) – a bipartite graph
- \(\text{nodes}\) (list or iterable, optional) – A container of nodes to use in computing the average. The nodes should be either the entire graph (the default) or one of the bipartite sets.
- \(\text{mode}\) (string) – The pairwise bipartite clustering method. It must be “dot”, “max”, or “min”

Returns

- clustering – The average bipartite clustering for the given set of nodes or the entire graph if no nodes are specified.

Return type float

Examples

```python
>>> from networkx.algorithms import bipartite
>>> G=nx.star_graph(3) # star graphs are bipartite
>>> bipartite.average_clustering(G)
0.75
>>> X,Y=bipartite.sets(G)
>>> bipartite.average_clustering(G,X)
0.0
>>> bipartite.average_clustering(G,Y)
1.0
```

See also:

- clustering()

Notes

The container of nodes passed to this function must contain all of the nodes in one of the bipartite sets (“top” or “bottom”) in order to compute the correct average bipartite clustering coefficients.

latapy_clustering

latapy_clustering(G, nodes=None, mode='dot')
Compute a bipartite clustering coefficient for nodes.

The bipartite clustering coefficient is a measure of local density of connections defined as^{20}:

\[c_u = \frac{\sum_{v \in N(N(u))} c_{uv}}{|N(N(u))|} \]

where \(N(N(u)) \) are the second order neighbors of \(u \) in \(G \) excluding \(u \), and \(c_{uv} \) is the pairwise clustering coefficient between nodes \(u \) and \(v \).

The mode selects the function for \(c_{uv} \) which can be:

- **dot**: \[c_{uv} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|} \]
- **min**: \[c_{uv} = \frac{|N(u) \cap N(v)|}{\min(|N(u)|, |N(v)|)} \]
- **max**: \[c_{uv} = \frac{|N(u) \cap N(v)|}{\max(|N(u)|, |N(v)|)} \]

Parameters
- \(G \) (graph) – A bipartite graph
- \(\text{nodes} \) (list or iterable (optional)) – Compute bipartite clustering for these nodes. The default is all nodes in \(G \).
- \(\text{mode} \) (string) – The pairwise bipartite clustering method to be used in the computation. It must be “dot”, “max”, or “min”.

Returns clustering – A dictionary keyed by node with the clustering coefficient value.

Return type dictionary

Examples

```python
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4) # path graphs are bipartite
>>> c = bipartite.clustering(G)
>>> c[0]
0.5
>>> c = bipartite.clustering(G, mode='min')
>>> c[0]
1.0
```

See also:
- robins_alexander_clustering(), square_clustering(), average_clustering()

robins_alexander_clustering

robins_alexander_clustering \((G)\)
Compute the bipartite clustering of \(G\).

Robins and Alexander \(^{21}\) defined bipartite clustering coefficient as four times the number of four cycles \(C_4\) divided by the number of three paths \(L_3\) in a bipartite graph:

\[
CC_4 = \frac{4 \times C_4}{L_3}
\]

Parameters
- \(G\) (graph) – a bipartite graph

Returns
- clustering – The Robins and Alexander bipartite clustering for the input graph.

Return type
- float

Examples

```python
>>> from networkx.algorithms import bipartite
>>> G = nx.davis_southern_women_graph()
>>> print(round(bipartite.robins_alexander_clustering(G), 3))
0.468
```

See also:
- `latapy_clustering()`
- `square_clustering()`

References

4.3.7 Redundancy

Node redundancy for bipartite graphs.

\(\text{node_redundancy}(G[, \text{nodes}])\) – Computes the node redundancy coefficients for the nodes in the bipartite graph \(G\).

\(\text{node_redundancy}(G, \text{nodes}=\text{None})\)
Computes the node redundancy coefficients for the nodes in the bipartite graph \(G\).

The redundancy coefficient of a node \(v\) is the fraction of pairs of neighbors of \(v\) that are both linked to other nodes. In a one-mode projection these nodes would be linked together even if \(v\) were not there.

More formally, for any vertex \(v\), the **redundancy coefficient of ‘v’** is defined by

\[
rc(v) = \frac{|\{\{u, w\} \subseteq N(v), \exists v' \neq v, (v', u) \in E \text{ and } (v', w) \in E\}|}{\frac{|N(v)|(|N(v)| - 1)}{2}},
\]

where \(N(v)\) is the set of neighbors of \(v\) in \(G\).

Parameters

- \(G \) (graph) – A bipartite graph
- \(\text{nodes} \) (list or iterable (optional)) – Compute redundancy for these nodes. The default is all nodes in \(G \).

Returns redundancy – A dictionary keyed by node with the node redundancy value.

Return type dictionary

Examples

Compute the redundancy coefficient of each node in a graph:

```python
>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> rc[0]
1.0
```

Compute the average redundancy for the graph:

```python
>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> sum(rc.values()) / len(G)
1.0
```

Compute the average redundancy for a set of nodes:

```python
>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> nodes = [0, 2]
>>> sum(rc[n] for n in nodes) / len(nodes)
1.0
```

Raises NetworkXError – If any of the nodes in the graph (or in nodes, if specified) has (out-)degree less than two (which would result in division by zero, according to the definition of the redundancy coefficient).

References

4.3.8 Centrality

- `closeness_centrality(G, nodes[, normalized])` – Compute the closeness centrality for nodes in a bipartite network.
- `degree_centrality(G, nodes)` – Compute the degree centrality for nodes in a bipartite network.
- `betweenness_centrality(G, nodes)` – Compute betweenness centrality for nodes in a bipartite network.
closeness_centrality

closeness_centrality(G, nodes, normalized=True)

Compute the closeness centrality for nodes in a bipartite network.

The closeness of a node is the distance to all other nodes in the graph or in the case that the graph is not connected to all other nodes in the connected component containing that node.

Parameters

- G (graph) – A bipartite network
- nodes (list or container) – Container with all nodes in one bipartite node set.
- normalized (bool, optional) – If True (default) normalize by connected component size.

Returns closeness – Dictionary keyed by node with bipartite closeness centrality as the value.

Return type dictionary

See also:

betweenness_centrality(), degree_centrality(), sets(), is_bipartite()

Notes

The nodes input parameter must contain all nodes in one bipartite node set, but the dictionary returned contains all nodes from both node sets.

Closeness centrality is normalized by the minimum distance possible. In the bipartite case the minimum distance for a node in one bipartite node set is 1 from all nodes in the other node set and 2 from all other nodes in its own set. Thus the closeness centrality for node \(v \) in the two bipartite sets \(U \) with \(n \) nodes and \(V \) with \(m \) nodes is

\[
c_v = \frac{m + 2(n - 1)}{d}, \text{for } v \in U,
\]

\[
c_v = \frac{n + 2(m - 1)}{d}, \text{for } v \in V,
\]

where \(d \) is the sum of the distances from \(v \) to all other nodes.

Higher values of closeness indicate higher centrality.

As in the unipartite case, setting normalized=True causes the values to normalized further to \(n-1 / \text{size}(G)-1 \) where \(n \) is the number of nodes in the connected part of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness centrality for each connected part separately.

References

degree_centrality

degree_centrality(G, nodes)

Compute the degree centrality for nodes in a bipartite network.

The degree centrality for a node \(v \) is the fraction of nodes connected to it.

Parameters

- G (graph) – A bipartite network

• **nodes** *(list or container)* – Container with all nodes in one bipartite node set.

Returns centrality – Dictionary keyed by node with bipartite degree centrality as the value.

Return type *dictionary*

See also:

`betweenness_centrality()`, `closeness_centrality()`, `sets()`, `is_bipartite()`

Notes

The nodes input parameter must contain all nodes in one bipartite node set, but the dictionary returned contains all nodes from both bipartite node sets.

For unipartite networks, the degree centrality values are normalized by dividing by the maximum possible degree (which is \(n - 1 \) where \(n \) is the number of nodes in \(G \)).

In the bipartite case, the maximum possible degree of a node in a bipartite node set is the number of nodes in the opposite node set \(^{23}\). The degree centrality for a node \(v \) in the bipartite sets \(U \) with \(n \) nodes and \(V \) with \(m \) nodes is

\[
\begin{align*}
d_v &= \frac{\text{deg}(v)}{m}, \text{for } v \in U, \\
d_v &= \frac{\text{deg}(v)}{n}, \text{for } v \in V,
\end{align*}
\]

where \(\text{deg}(v) \) is the degree of node \(v \).

References

`betweenness_centrality`

betweenness_centrality *(\(G \), \(\text{nodes} \))*

Compute betweenness centrality for nodes in a bipartite network.

Betweenness centrality of a node \(v \) is the sum of the fraction of all-pairs shortest paths that pass through \(v \).

Values of betweenness are normalized by the maximum possible value which for bipartite graphs is limited by the relative size of the two node sets \(^{24}\).

Let \(n \) be the number of nodes in the node set \(U \) and \(m \) be the number of nodes in the node set \(V \), then nodes in \(U \) are normalized by dividing by

\[
\frac{1}{2} [m^2(s + 1)^2 + m(s + 1)(2t - s - 1) - t(2s - t + 3)],
\]

where

\[
s = (n - 1) \div m, \quad t = (n - 1) \mod m,
\]

and nodes in \(V \) are normalized by dividing by

\[
\frac{1}{2} [n^2(p + 1)^2 + n(p + 1)(2r - p - 1) - r(2p - r + 3)],
\]

4.3. Bipartite
where,
\[p = (m - 1) \div n, r = (m - 1) \mod n. \]

Parameters
- \(G \) (graph) – A bipartite graph
- \(\text{nodes} \) (list or container) – Container with all nodes in one bipartite node set.

Returns
- \text{betweenness} – Dictionary keyed by node with bipartite betweenness centrality as the value.

Return type
- dictionary

See also:
- \text{degree_centrality()}, \text{closeness_centrality()}, \text{sets()}, \text{is_bipartite()}

Notes
The nodes input parameter must contain all nodes in one bipartite node set, but the dictionary returned contains all nodes from both node sets.

References

4.3.9 Generators

Generators and functions for bipartite graphs.

- \text{complete_bipartite_graph}(n1, n2[, create_using])
 Return the complete bipartite graph \(K_{n1,n2} \).
- \text{configuration_model}(aseq, bseq[, ...])
 Return a random bipartite graph from two given degree sequences.
- \text{havel_hakimi_graph}(aseq, bseq[, create_using])
 Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.
- \text{reverse_havel_hakimi_graph}(aseq, bseq[, ...])
 Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.
- \text{alternating_havel_hakimi_graph}(aseq, bseq[, ...])
 Return a bipartite graph from two given degree sequences using an alternating Havel-Hakimi style construction.
- \text{preferential_attachment_graph}(aseq, pl[, ...])
 Create a bipartite graph with a preferential attachment model from a given degree sequence.
- \text{random_graph}(n, m[, p, seed, directed])
 Return a random bipartite graph.
- \text{gnmk_random_graph}(n, m, k[, seed, directed])
 Return a random bipartite graph \(G_{n,m,k} \).

\text{complete_bipartite_graph}

- \text{complete_bipartite_graph}(n1, n2, create_using=None)
 Return the complete bipartite graph \(K_{n1,n2} \).

 Composed of two partitions with \(n1 \) nodes in the first and \(n2 \) nodes in the second. Each node in the first is connected to each node in the second.

 Parameters
 - \text{n1} (integer) – Number of nodes for node set A.
 - \text{n2} (integer) – Number of nodes for node set B.
 - \text{create_using} (NetworkX graph instance, optional) – Return graph of this type.
Notes

Node labels are the integers 0 to $n_1 + n_2 - 1$.
The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1 to indicate which bipartite set the node belongs to.

configuration_model

configuration_model (aseq, bseq, create_using=None, seed=None)
Return a random bipartite graph from two given degree sequences.

Parameters

- **aseq (list)** – Degree sequence for node set A.
- **bseq (list)** – Degree sequence for node set B.
- **create_using (NetworkX graph instance, optional)** – Return graph of this type.
- **seed (integer, optional)** – Seed for random number generator.

Notes

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1 to indicate which bipartite set the node belongs to.

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package.

havel_hakimi_graph

havel_hakimi_graph (aseq, bseq, create_using=None)
Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by connecting the highest degree nodes in set A to the highest degree nodes in set B until all stubs are connected.

Parameters

- **aseq (list)** – Degree sequence for node set A.
- **bseq (list)** – Degree sequence for node set B.
- **create_using (NetworkX graph instance, optional)** – Return graph of this type.
Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package.

The sum of the two sequences must be equal: \(\text{sum}(aseq) = \text{sum}(bseq) \) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1 to indicate which bipartite set the node belongs to.

reverse_havel_hakimi_graph

reverse_havel_hakimi_graph \((aseq, bseq, create_using=None)\)

Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.

Nodes from set A are connected to nodes in the set B by connecting the highest degree nodes in set A to the lowest degree nodes in set B until all stubs are connected.

Parameters

- **aseq** *(list)* – Degree sequence for node set A.
- **bseq** *(list)* – Degree sequence for node set B.
- **create_using** *(NetworkX graph instance, optional)* – Return graph of this type.

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package.

The sum of the two sequences must be equal: \(\text{sum}(aseq) = \text{sum}(bseq) \) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1 to indicate which bipartite set the node belongs to.

alternating_havel_hakimi_graph

alternating_havel_hakimi_graph \((aseq, bseq, create_using=None)\)

Return a bipartite graph from two given degree sequences using an alternating Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by connecting the highest degree nodes in set A to alternatively the highest and the lowest degree nodes in set B until all stubs are connected.

Parameters

- **aseq** *(list)* – Degree sequence for node set A.
- **bseq** *(list)* – Degree sequence for node set B.
- **create_using** *(NetworkX graph instance, optional)* – Return graph of this type.
Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package.

The sum of the two sequences must be equal: \text{sum}(\text{aseq})=\text{sum}(\text{bseq}) \text{If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact.}

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1 to indicate which bipartite set the node belongs to.

preferential_attachment_graph

preferential_attachment_graph (aseq, p, create_using=None, seed=None)

Create a bipartite graph with a preferential attachment model from a given single degree sequence.

Parameters

• aseq (list) – Degree sequence for node set A.
• p (float) – Probability that a new bottom node is added.
• create_using (NetworkX graph instance, optional) – Return graph of this type.
• seed (integer, optional) – Seed for random number generator.

References

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package.

random_graph

random_graph (n, m, p, seed=None, directed=False)

Return a bipartite random graph.

This is a bipartite version of the binomial (\text{Erdős-Rényi}) graph.

Parameters

• n (int) – The number of nodes in the first bipartite set.
• m (int) – The number of nodes in the second bipartite set.
• p (float) – Probability for edge creation.
• seed (int, optional) – Seed for random number generator (default=None).
• directed (bool, optional (default=False)) – If True return a directed graph
Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package.

The bipartite random graph algorithm chooses each of the n*m (undirected) or 2*nm (directed) possible edges with probability p.

This algorithm is O(n+m) where m is the expected number of edges.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1 to indicate which bipartite set the node belongs to.

See also:

gnp_random_graph(), configuration_model()

References

gnmk_random_graph

gnmk_random_graph(n, m, k, seed=None, directed=False)

Return a random bipartite graph G_{n,m,k}.

Produces a bipartite graph chosen randomly out of the set of all graphs with n top nodes, m bottom nodes, and k edges.

Parameters

• n (int) – The number of nodes in the first bipartite set.
• m (int) – The number of nodes in the second bipartite set.
• k (int) – The number of edges
• seed (int, optional) – Seed for random number generator (default=None).
• directed (bool, optional (default=False)) – If True return a directed graph

Examples

from networkx.algorithms import bipartite G = bipartite.gnmk_random_graph(10,20,50)

See also:

gnm_random_graph()

Notes

This function is not imported in the main namespace. To use it you have to explicitly import the bipartite package.

If k > m * n then a complete bipartite graph is returned.

This graph is a bipartite version of the G_{nm} random graph model.
4.4 Blockmodeling

Functions for creating network blockmodels from node partitions.

Created by Drew Conway <drew.conway@nyu.edu> Copyright (c) 2010. All rights reserved.

\textbf{blockmodel}(G, partitions[, multigraph]) Returns a reduced graph constructed using the generalized block modeling technique.

4.4.1 blockmodel

\textbf{blockmodel}(G, partitions, multigraph=False) Returns a reduced graph constructed using the generalized block modeling technique.

The blockmodel technique collapses nodes into blocks based on a given partitioning of the node set. Each partition of nodes (block) is represented as a single node in the reduced graph.

Edges between nodes in the block graph are added according to the edges in the original graph. If the parameter multigraph is False (the default) a single edge is added with a weight equal to the sum of the edge weights between nodes in the original graph. The default is a weight of 1 if weights are not specified. If the parameter multigraph is True then multiple edges are added each with the edge data from the original graph.

\textbf{Parameters}

- \textit{G} (\textit{graph}) – A networkx Graph or DiGraph
- \textit{partitions} (\textit{list of lists, or list of sets}) – The partition of the nodes. Must be non-overlapping.
- \textit{multigraph} (\textit{bool, optional}) – If True return a MultiGraph with the edge data of the original graph applied to each corresponding edge in the new graph. If False return a Graph with the sum of the edge weights, or a count of the edges if the original graph is unweighted.

\textbf{Returns} \textit{blockmodel}

\textbf{Return type} a Networkx graph object

\textbf{Examples}

```python
>>> G=nx.path_graph(6)
>>> partition=[[0,1],[2,3],[4,5]]
>>> M=nx.blockmodel(G,partition)
```

\textbf{References}

4.5 Boundary

Routines to find the boundary of a set of nodes.

Edge boundaries are edges that have only one end in the set of nodes.

Node boundaries are nodes outside the set of nodes that have an edge to a node in the set.

\textbf{edge_boundary}(G, nbunch1[, nbunch2]) Return the edge boundary.

\textbf{node_boundary}(G, nbunch1[, nbunch2]) Return the node boundary.

4.5. Boundary
4.5.1 edge_boundary

edge_boundary *(G, nbunch1, nbunch2=\texttt{None})*

Return the edge boundary.

Edge boundaries are edges that have only one end in the given set of nodes.

Parameters

- **G** *(\texttt{graph})* – A networkx graph
- **nbunch1** *(\texttt{list, container})* – Interior node set
- **nbunch2** *(\texttt{list, container})* – Exterior node set. If None then it is set to all of the nodes in G not in nbunch1.

Returns

- **elist** – List of edges

Return type list

Notes

Nodes in nbunch1 and nbunch2 that are not in G are ignored.

nbunch1 and nbunch2 are usually meant to be disjoint, but in the interest of speed and generality, that is not required here.

4.5.2 node_boundary

node_boundary *(G, nbunch1, nbunch2=\texttt{None})*

Return the node boundary.

The node boundary is all nodes in the edge boundary of a given set of nodes that are in the set.

Parameters

- **G** *(\texttt{graph})* – A networkx graph
- **nbunch1** *(\texttt{list, container})* – Interior node set
- **nbunch2** *(\texttt{list, container})* – Exterior node set. If None then it is set to all of the nodes in G not in nbunch1.

Returns

- **nlist** – List of nodes.

Return type list

Notes

Nodes in nbunch1 and nbunch2 that are not in G are ignored.

nbunch1 and nbunch2 are usually meant to be disjoint, but in the interest of speed and generality, that is not required here.
4.6 Centrality

4.6.1 Degree
degree_centrality

degree_centrality(G)
Compute the degree centrality for nodes.

Parameters
G (graph) – A NetworkX graph

Returns
nodes – Dictionary of nodes with degree centrality as the value.

Return type
dictionary

See also:

betweenness_centrality(), load_centrality(), eigenvector_centrality()

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree centrality greater than 1 are possible.

in_degree_centrality

in_degree_centrality(G)
Compute the in-degree centrality for nodes.

Parameters
G (graph) – A NetworkX graph

Returns
nodes – Dictionary of nodes with in-degree centrality as values.

Return type
dictionary

Raises
NetworkXError – If the graph is undirected.

See also:

degree_centrality(), out_degree_centrality()

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree centrality greater than 1 are possible.
out_degree_centrality

out_degree_centrality(G)

Compute the out-degree centrality for nodes.

The out-degree centrality for a node v is the fraction of nodes its outgoing edges are connected to.

Parameters

- **G** (graph) – A NetworkX graph

Returns

- **nodes** – Dictionary of nodes with out-degree centrality as values.

Return type

dictionary

Raises

- NetworkXError – If the graph is undirected.

See also:

degree_centrality(), in_degree_centrality()

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1 where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree centrality greater than 1 are possible.

4.6.2 Closeness

closeness_centrality

closeness_centrality(G, u=None, distance=None, normalized=True)

Compute closeness centrality for nodes.

Closeness centrality of a node u is the reciprocal of the sum of the shortest path distances from u to all n – 1 other nodes. Since the sum of distances depends on the number of nodes in the graph, closeness is normalized by the sum of minimum possible distances n – 1.

\[C(u) = \frac{n - 1}{\sum_{v=1}^{n-1} d(v, u)} \]

where d(v, u) is the shortest-path distance between v and u, and n is the number of nodes in the graph.

Notice that higher values of closeness indicate higher centrality.

Parameters

- **G** (graph) – A NetworkX graph
- **u** (node, optional) – Return only the value for node u
- **distance** (edge attribute key, optional (default=None)) – Use the specified edge attribute as the edge distance in shortest path calculations

• **normalized** *(bool, optional)* – If True (default) normalize by the number of nodes in the connected part of the graph.

Returns nodes – Dictionary of nodes with closeness centrality as the value.

Return type dictionary

See also:

betweenness_centrality(), load_centrality(), eigenvector_centrality(), degree_centrality()

Notes

The closeness centrality is normalized to \((n - 1)/(|G| - 1)\) where \(n\) is the number of nodes in the connected part of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness centrality for each connected part separately.

If the ‘distance’ keyword is set to an edge attribute key then the shortest-path length will be computed using Dijkstra’s algorithm with that edge attribute as the edge weight.

References

4.6.3 Betweenness

betweenness_centrality(G[, k, normalized, ...]) Compute the shortest-path betweenness centrality for nodes.

degree_centrality()

betweenness_centrality *(G, k=None, normalized=True, weight=None, endpoints=False, seed=None)*

Compute the shortest-path betweenness centrality for nodes.

Betweenness centrality of a node \(v\) is the sum of the fraction of all-pairs shortest paths that pass through \(v\):

\[
c_B(v) = \sum_{s, t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}
\]

where \(V\) is the set of nodes, \(\sigma(s, t)\) is the number of shortest \((s, t)\)-paths, and \(\sigma(s, t|v)\) is the number of those paths passing through some node \(v\) other than \(s, t\). If \(s = t, \sigma(s, t) = 1\), and if \(v \in s, t, \sigma(s, t|v) = 0\)^26.

Parameters

• **G** *(graph)* – A NetworkX graph

• **k** *(int, optional (default=None)) – If k is not None use k node samples to estimate betweenness. The value of k <= n where n is the number of nodes in the graph. Higher values give better approximation.

• **normalized** *(bool, optional)* – If True the betweenness values are normalized by \(2/((n - 1)(n - 2))\) for graphs, and \(1/((n - 1)(n - 2))\) for directed graphs where \(n\) is the number of nodes in G.

NetworkX Reference, Release 1.10

- **weight** *(None or string, optional)* – If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight.

- **endpoints** *(bool, optional)* – If True include the endpoints in the shortest path counts.

Returns nodes – Dictionary of nodes with betweenness centrality as the value.

Return type dictionary

See also:
edge_betweenness_centrality(), *load_centrality()*

Notes

The algorithm is from Ulrik Brandes 27. See 28 for the original first published version and 2 for details on algorithms for variations and related metrics.

For approximate betweenness calculations set k=#samples to use k nodes (“pivots”) to estimate the betweenness values. For an estimate of the number of pivots needed see 29.

For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes.

References

`edge_betweenness_centrality`

edge_betweenness_centrality *(G, k=None, normalized=True, weight=None, seed=None)*

Compute betweenness centrality for edges.

Betweenness centrality of an edge e is the sum of the fraction of all-pairs shortest paths that pass through e:

$$c_B(e) = \sum_{s,t \in V} \frac{\sigma(s, t|e)}{\sigma(s, t)}$$

where V is the set of nodes, `$\sigma(s, t)$` is the number of shortest (s, t)-paths, and `$\sigma(s, t|e)$` is the number of those paths passing through edge e 30.

Parameters

- **G (graph)** – A NetworkX graph

- **k** *(int, optional (default=None))* – If k is not None use k node samples to estimate betweenness. The value of k <= n where n is the number of nodes in the graph. Higher values give better approximation.

- **normalized** *(bool, optional)* – If True the betweenness values are normalized by $2/(n(n-1))$ for graphs, and $1/(n(n-1))$ for directed graphs where n is the number of nodes in G.

- **weight** *(None or string, optional)* – If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight.

4.6. Centrality
Returns edges – Dictionary of edges with betweenness centrality as the value.

Return type dictionary

See also:

`betweenness_centrality()`, `edge_load()`

Notes

The algorithm is from Ulrik Brandes 31.

For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes.

References

4.6.4 Current Flow Closeness

`current_flow_closeness_centrality(G[, ...])` Compute current-flow closeness centrality for nodes.

`current_flow_closeness_centrality(G, weight='weight', dtype=<type 'float'>, solver='lu')` Compute current-flow closeness centrality for nodes.

Current-flow closeness centrality is variant of closeness centrality based on effective resistance between nodes in a network. This metric is also known as information centrality.

Parameters

- G (graph) – A NetworkX graph
- dtype (data type (float)) – Default data type for internal matrices. Set to np.float32 for lower memory consumption.
- solver (string (default= 'lu')) – Type of linear solver to use for computing the flow matrix. Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses least memory).

Returns nodes – Dictionary of nodes with current flow closeness centrality as the value.

Return type dictionary

See also:

`closeness_centrality()`

Notes

The algorithm is from Brandes 32.

See also 33 for the original definition of information centrality.

References

4.6.5 Current-Flow Betweenness

current_flow_betweenness_centrality(G[, ...]) Compute current-flow betweenness centrality for nodes.

edge_current_flow_betweenness_centrality(G) Compute current-flow betweenness centrality for edges.

approximate_current_flow_betweenness_centrality(G) Compute the approximate current-flow betweenness centrality.

current_flow_betweenness_centrality

current_flow_betweenness_centrality(G, normalized=True, weight='weight', dtype=<type 'float'>, solver='full')

Compute current-flow betweenness centrality for nodes.

Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to betweenness centrality which uses shortest paths.

Current-flow betweenness centrality is also known as random-walk betweenness centrality 34.

Parameters

- G (graph) – A NetworkX graph
- normalized (bool, optional (default=True)) – If True the betweenness values are normalized by 2/[(n-1)(n-2)] where n is the number of nodes in G.
- weight (string or None, optional (default='weight')) – Key for edge data used as the edge weight. If None, then use 1 as each edge weight.
- dtype (data type (float)) – Default data type for internal matrices. Set to np.float32 for lower memory consumption.
- solver (string (default='lu')) – Type of linear solver to use for computing the flow matrix. Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses least memory).

Returns

- nodes – Dictionary of nodes with betweenness centrality as the value.

Return type dictionary

See also:

approximate_current_flow_betweenness_centrality(), betweenness_centrality(), edge_betweenness_centrality(), edge_current_flow_betweenness_centrality()

Notes

Current-flow betweenness can be computed in \(O(I(n - 1) + mn \log n) \) time 35, where \(I(n - 1) \) is the time needed to compute the inverse Laplacian. For a full matrix this is \(O(n^3) \) but using sparse methods you can achieve \(O(mn \sqrt{k}) \) where \(k \) is the Laplacian matrix condition number.

4.6. Centrality
The space required is $O(nw)$ where w is the width of the sparse Laplacian matrix. Worse case is $w = n$ for $O(n^2)$.

If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set to 1.

References

dge_current_flow_betweenness_centrality

dge_current_flow_betweenness_centrality(G, normalized=True, weight='weight', dtype=<type 'float'>, solver='full')

Compute current-flow betweenness centrality for edges.

Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to betweenness centrality which uses shortest paths.

Current-flow betweenness centrality is also known as random-walk betweenness centrality 36.

Parameters

- G (graph) – A NetworkX graph
- normalized (bool, optional (default=True)) – If True the betweenness values are normalized by $2/[(n-1)(n-2)]$ where n is the number of nodes in G.
- weight (string or None, optional (default='weight')) – Key for edge data used as the edge weight. If None, then use 1 as each edge weight.
- dtype (data type (float)) – Default data type for internal matrices. Set to np.float32 for lower memory consumption.
- solver (string (default='lu')) – Type of linear solver to use for computing the flow matrix. Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses least memory).

Returns nodes – Dictionary of edge tuples with betweenness centrality as the value.

Return type dictionary

See also:

 betweenness_centrality(), edge_betweenness_centrality(), current_flow_betweenness_centrality()

Notes

Current-flow betweenness can be computed in $O(I(n - 1) + mn \log n)$ time 37, where $I(n - 1)$ is the time needed to compute the inverse Laplacian. For a full matrix this is $O(n^3)$ but using sparse methods you can achieve $O(nm \sqrt{k})$ where k is the Laplacian matrix condition number.

The space required is $O(nw)$ where w is the width of the sparse Laplacian matrix. Worse case is $w = n$ for $O(n^2)$.

If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set to 1.

approximate_current_flow_betweenness_centrality

approximate_current_flow_betweenness_centrality \((G, \text{normalized}=\text{True}, \text{weight}=\text{'weight'}, \text{dtype}=\text{<type 'float'>}, \text{solver}=\text{'full'}, \text{epsilon}=0.5, \text{kmax}=10000)\)

Compute the approximate current-flow betweenness centrality for nodes.

Approximates the current-flow betweenness centrality within absolute error of \(\epsilon\) with high probability \(^{38}\).

Parameters

- \(G\) (graph) – A NetworkX graph
- \text{normalized}\ (bool, optional (default=True)) – If True the betweenness values are normalized by \(2/(n-1)(n-2)\) where \(n\) is the number of nodes in \(G\).
- \text{weight}\ (string or None, optional (default='weight')) – Key for edge data used as the edge weight. If None, then use 1 as each edge weight.
- \text{dtype}\ (data type (float)) – Default data type for internal matrices. Set to np.float32 for lower memory consumption.
- \text{solver}\ (string (default='lu')) – Type of linear solver to use for computing the flow matrix. Options are “full” (uses most memory), “lu” (recommended), and “cg” (uses least memory).
- \text{epsilon}\ (float) – Absolute error tolerance.
- \text{kmax}\ (int) – Maximum number of sample node pairs to use for approximation.

Returns

- \text{nodes}\ – Dictionary of nodes with betweenness centrality as the value.

Return type

dictionary

See also:

current_flow_betweenness_centrality()

Notes

The running time is \(O((1/\epsilon^2)m\sqrt{k}\log n)\) and the space required is \(O(m)\) for \(n\) nodes and \(m\) edges.

If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set to 1.

References

4.6.6 Eigenvector

- \text{eigenvector_centrality}(G[, \text{max_iter}, \text{tol}, ...])\ – Compute the eigenvector centrality for the graph \(G\).
- \text{eigenvector_centrality_numpy}(G[, \text{weight}])\ – Compute the eigenvector centrality for the graph \(G\).
- \text{katz_centrality}(G[, \text{alpha}, \text{beta}, \text{max_iter}, ...])\ – Compute the Katz centrality for the nodes of the graph \(G\).
- \text{katz_centrality_numpy}(G[, \text{alpha}, \text{beta}, ...])\ – Compute the Katz centrality for the graph \(G\).

eigenvector_centrality

eigenvector_centrality *(G, max_iter=100, tol=1e-06, nstart=None, weight='weight')*

Compute the eigenvector centrality for the graph G.

Eigenvector centrality computes the centrality for a node based on the centrality of its neighbors. The eigenvector centrality for node *i* is

\[A x = \lambda x \]

where \(A \) is the adjacency matrix of the graph G with eigenvalue \(\lambda \). By virtue of the Perron–Frobenius theorem, there is a unique and positive solution if \(\lambda \) is the largest eigenvalue associated with the eigenvector of the adjacency matrix \(A \) \(^{39}\).

Parameters
- \(G \) *(graph)* – A networkx graph
- \(\text{max_iter} \) *(integer, optional)* – Maximum number of iterations in power method.
- \(\text{tol} \) *(float, optional)* – Error tolerance used to check convergence in power method iteration.
- \(\text{nstart} \) *(dictionary, optional)* – Starting value of eigenvector iteration for each node.
- \(\text{weight} \) *(None or string, optional)* – If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight.

Returns nodes – Dictionary of nodes with eigenvector centrality as the value.

Return type dictionary

Examples

```python
>>> G = nx.path_graph(4)
>>> centrality = nx.eigenvector_centrality(G)
>>> print(['%s %0.2f' % (node, centrality[node]) for node in centrality])
['0 0.37', '1 0.60', '2 0.60', '3 0.37']
```

See also:
- *eigenvector_centrality_numpy()*, *pagerank()*, *hits()*, *Notes()*, *-------()*, *The()*, *The(), no()*, *iterations()*, *reached().*, *For()*, *to()*, *first()*

References

eigenvector_centrality_numpy *(G, weight='weight')*

Compute the eigenvector centrality for the graph G.

Eigenvector centrality computes the centrality for a node based on the centrality of its neighbors. The eigenvector centrality for node *i* is

\[A x = \lambda x \]

where \(A \) is the adjacency matrix of the graph G with eigenvalue \(\lambda \). By virtue of the Perron–Frobenius theorem, there is a unique and positive solution if \(\lambda \) is the largest eigenvalue associated with the eigenvector of the adjacency matrix \(A \) \(^{40}\).

Parameters

- **G (graph)** – A networkx graph
- **weight** *(None or string, optional)* – The name of the edge attribute used as weight. If None, all edge weights are considered equal.

Returns **nodes** – Dictionary of nodes with eigenvector centrality as the value.

Return type **dictionary**

Examples

```python
>>> G = nx.path_graph(4)
>>> centrality = nx.eigenvector_centrality_numpy(G)
>>> print(['%s %0.2f' % (node, centrality[node]) for node in centrality])
['0 0.37', '1 0.60', '2 0.60', '3 0.37']
```

See also:

- `eigenvector_centrality()`, `pagerank()`, `hits()`, `Notes()`, `---------()`, `The()`, `This()`, `find()`, `For()`, `to()`, `first()`

References

katz_centrality

katz_centrality *(G, alpha=0.1, beta=1.0, max_iter=1000, tol=1e-06, nstart=None, normalized=True, weight='weight')*

Compute the Katz centrality for the nodes of the graph G.

Katz centrality computes the centrality for a node based on the centrality of its neighbors. It is a generalization of the eigenvector centrality. The Katz centrality for node \(i \) is

\[
x_i = \alpha \sum_j A_{ij} x_j + \beta,
\]

where \(A \) is the adjacency matrix of the graph G with eigenvalues \(\lambda \).

The parameter \(\beta \) controls the initial centrality and

\[
\alpha < \frac{1}{\lambda_{max}}.
\]

Katz centrality computes the relative influence of a node within a network by measuring the number of the immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under consideration through these immediate neighbors.

Extra weight can be provided to immediate neighbors through the parameter \(\beta \). Connections made with distant neighbors are, however, penalized by an attenuation factor \(\alpha \) which should be strictly less than the inverse largest eigenvalue of the adjacency matrix in order for the Katz centrality to be computed correctly. More information is provided in\(^{41}\).

Parameters

- **G (graph)** – A NetworkX graph
- **alpha (float)** – Attenuation factor

NetworkX Reference, Release 1.10

- **beta** *(scalar or dictionary, optional (default=1.0)) – Weight attributed to the immediate neighborhood. If not a scalar, the dictionary must have a value for every node.*

- **max_iter** *(integer, optional (default=1000)) – Maximum number of iterations in power method.*

- **tol** *(float, optional (default=1.0e-6)) – Error tolerance used to check convergence in power method iteration.*

- **nstart** *(dictionary, optional) – Starting value of Katz iteration for each node.*

- **normalized** *(bool, optional (default=True)) – If True normalize the resulting values.*

- **weight** *(None or string, optional) – If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight.*

Returns nodes – Dictionary of nodes with Katz centrality as the value.

Return type dictionary

Raises NetworkXError – If the parameter beta is not a scalar but lacks a value for at least one node

Examples

```python
>>> import math
>>> G = nx.path_graph(4)
>>> phi = (1+math.sqrt(5))/2.0  # largest eigenvalue of adj matrix
>>> centrality = nx.katz_centrality(G,1/phi-0.01)
>>> for n,c in sorted(centrality.items()):
...     print("%d %0.2f"%(n,c))
0 0.37
1 0.60
2 0.60
3 0.37
```

See also:

katz_centrality_numpy(), eigenvector_centrality(), eigenvector_centrality_numpy(), pagerank(), hits()

Notes

Katz centrality was introduced by\(^2\).

This algorithm it uses the power method to find the eigenvector corresponding to the largest eigenvalue of the adjacency matrix of G. The constant alpha should be strictly less than the inverse of largest eigenvalue of the adjacency matrix for the algorithm to converge. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.

When \(\alpha = 1/\lambda_{\text{max}}\) and \(\beta = 0\), Katz centrality is the same as eigenvector centrality.

For directed graphs this finds “left” eigenvectors which corresponds to the in-edges in the graph. For out-edges Katz centrality first reverse the graph with G.reverse().

\(^2\)Leo Katz: A New Status Index Derived from Sociometric Index. Psychometrika 18(1):39–43, 1953

http://phya.snu.ac.kr/~dkim/PRL87278701.pdf

Chapter 4. Algorithms
References

katz_centrality_numpy

katz_centrality_numpy *(G, alpha=0.1, beta=1.0, normalized=True, weight='weight')*

Compute the Katz centrality for the graph G.

Katz centrality computes the centrality for a node based on the centrality of its neighbors. It is a generalization of the eigenvector centrality. The Katz centrality for node \(i\) is

\[x_i = \alpha \sum_j A_{ij} x_j + \beta, \]

where \(A\) is the adjacency matrix of the graph G with eigenvalues \(\lambda\).

The parameter \(\beta\) controls the initial centrality and

\[\alpha < \frac{1}{\lambda_{max}}. \]

Katz centrality computes the relative influence of a node within a network by measuring the number of the immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under consideration through these immediate neighbors.

Extra weight can be provided to immediate neighbors through the parameter \(\beta\). Connections made with distant neighbors are, however, penalized by an attenuation factor \(\alpha\) which should be strictly less than the inverse largest eigenvalue of the adjacency matrix in order for the Katz centrality to be computed correctly. More information is provided in \(^{43}\).

Parameters

- **G** *(graph)* – A NetworkX graph
- **alpha** *(float)* – Attenuation factor
- **beta** *(scalar or dictionary, optional (default=1.0))* – Weight attributed to the immediate neighborhood. If not a scalar the dictionary must have an value for every node.
- **normalized** *(bool)* – If True normalize the resulting values.
- **weight** *(None or string, optional)* – If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight.

Returns

- **nodes** – Dictionary of nodes with Katz centrality as the value.

Return type

- dictionary

Raises

- NetworkXError – If the parameter beta is not a scalar but lacks a value for at least one node.

Examples

```python
>>> import math
>>> G = nx.path_graph(4)
>>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
>>> centrality = nx.katz_centrality_numpy(G,1/phi)
>>> for n,c in sorted(centrality.items()):
...     print("%d %.2f"%(n,c))
```

Katz centrality was introduced by 44.

This algorithm uses a direct linear solver to solve the above equation. The constant alpha should be strictly less than the inverse of largest eigenvalue of the adjacency matrix for there to be a solution. When $\alpha = 1/\lambda_{\text{max}}$ and $\beta = 0$, Katz centrality is the same as eigenvector centrality.

For directed graphs this finds “left” eigenvectors which corresponds to the in-edges in the graph. For out-edges Katz centrality first reverse the graph with G.reverse().

References

4.6.7 Communicability

communicability(G)
Return communicability between all pairs of nodes in G.

communicability_EXP(G)
Return communicability between all pairs of nodes in G.

communicability_centrality(G)
Return communicability centrality for each node in G.

communicability_centrality_EXP(G)
Return the communicability centrality for each node of G

communicability_betweenness_centrality$(G, [...])$
Return communicability betweenness for all pairs of nodes in G.

estra_da_index(G)
Return the Estrada index of a the graph G.

communicability

communicability(G)
Return communicability between all pairs of nodes in G.

Parameters
G (graph) –

Returns
comm – Dictionary of dictionaries keyed by nodes with communicability as the value.

Return type
dictionary of dictionaries

Raises
NetworkXError – If the graph is not undirected and simple.

See also:

communicability_centrality_EXP() Communicability centrality for each node of G using matrix exponential.

communicability_centrality() Communicability centrality for each node in G using spectral decomposition.

communicability() Communicability between pairs of nodes in G.

http://phya.snu.ac.kr/~dkim/PRL87278701.pdf
Notes

This algorithm uses a spectral decomposition of the adjacency matrix. Let G=(V,E) be a simple undirected graph. Using the connection between the powers of the adjacency matrix and the number of walks in the graph, the communicability between nodes u and v based on the graph spectrum is

\[C(u, v) = \sum_{j=1}^{n} \phi_j(u)\phi_j(v)e^{\lambda_j}, \]

where \(\phi_j(u)\) is the \(u\)th element of the \(j\)th orthonormal eigenvector of the adjacency matrix associated with the eigenvalue \(\lambda_j\).

References

Examples

```python
>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> c = nx.communicability(G)
```

`communicability_exp`

`communicability_exp(G)`

Return communicability between all pairs of nodes in G.

Communicability between pair of node (u,v) of node in G is the sum of closed walks of different lengths starting at node u and ending at node v.

Parameters

- `G (graph)`

Returns

- `comm` – Dictionary of dictionaries keyed by nodes with communicability as the value.

Return type

dictionary of dictionaries

Raises

- `NetworkXError` – If the graph is not undirected and simple.

See also:

- `communicability_centrality_exp()` Communicability centrality for each node of G using matrix exponential.
- `communicability_centrality()` Communicability centrality for each node in G using spectral decomposition.
- `communicability_exp()` Communicability between all pairs of nodes in G using spectral decomposition.

Notes

This algorithm uses matrix exponentiation of the adjacency matrix.

Let G=(V,E) be a simple undirected graph. Using the connection between the powers of the adjacency matrix and the number of walks in the graph, the communicability between nodes u and v is

\[C(u, v) = (e^{A})_{uv}, \]

where \(A\) is the adjacency matrix of G.

communicability_centrality

communicability_centrality(*G*)

Return communicability centrality for each node in *G*.

Communicability centrality, also called subgraph centrality, of a node *n* is the sum of closed walks of all lengths starting and ending at node *n*.

- **Parameters**
 - *G* (*graph*)
 - **Returns** nodes – Dictionary of nodes with communicability centrality as the value.
 - **Return type** dictionary
 - **Raises** NetworkXError – If the graph is not undirected and simple.

See also:

- **communicability()** Communicability between all pairs of nodes in *G*.
- **communicability_centrality()** Communicability centrality for each node of *G*.

Notes

This version of the algorithm computes eigenvalues and eigenvectors of the adjacency matrix.

Communicability centrality of a node *u* in *G* can be found using a spectral decomposition of the adjacency matrix,

\[
SC(u) = \sum_{j=1}^{N} (v_j^n)^2 e^{\lambda_j},
\]

where *v_j* is an eigenvector of the adjacency matrix *A* of *G* corresponding to the eigenvalue *\lambda_j*.

Examples

```python
>>> G = nx.Graph([(0,1), (1,2), (1,5), (5,4), (2,4), (2,3), (4,3), (3,6)])
>>> c = nx.communicability_exp(G)
```

References

communicability_centrality_exp

```python
def communicability_centrality_exp(G):
    # Return the communicability centrality for each node of G

    # Communicability centrality, also called subgraph centrality, of a
data node *n* is the sum of closed walks of all
lengths starting and ending at node *n*.

    Parameters
    ----------
    G : graph
        A NetworkX graph.

    Returns
    -------
    nodes : dictionary
        A dictionary with nodes as keys and communicability centrality
        as values.

    Returns type
    ------------
    dictionary

    Raises
    -----
    NetworkXError
        If the graph is not undirected and simple.

    See also:
    --------
    communicability() : Communicability between all pairs of nodes in G.
    communicability_centrality() : Communicability centrality for each
    node of G.

    Notes
    -----
    This version of the algorithm exponentiates the adjacency matrix. The
    communicability centrality of a node *u* in G can be found using
    the matrix exponential of the adjacency matrix of G:

    \[ SC(u) = (e^A)_{uu}. \]

    References
    ----------
    .. [49] Ernesto Estrada, Juan A. Rodriguez-Velazquez, “Subgraph
            centrality in complex networks”, Physical Review E 71, 056103
    .. [50] Ernesto Estrada, Naomichi Hatano, “Communicability in
```

Examples

```python
>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> sc = nx.communicability_centrality_exp(G)
```

communicability_betweenness_centrality

```python
def communicability_betweenness_centrality(G, normalized=True):
    # Return communicability betweenness for all pairs of nodes in G.

    Communicability betweenness measure makes use of the number of walks
    connecting every pair of nodes as the basis of a betweenness centrality
    measure.

    Parameters
    ----------
    G : graph
        A NetworkX graph.

    Returns
    -------
    nodes : dictionary
        A dictionary with nodes as keys and communicability betweenness
        as values.

    Returns type
    ------------
    dictionary

    Raises
    -----
    NetworkXError
        If the graph is not undirected and simple.
```


4.6. Centrality

191
See also:

- `communicability()` Communicability between all pairs of nodes in G.
- `communicability_centrality()` Communicability centrality for each node of G using matrix exponential.
- `communicability_centrality_exp()` Communicability centrality for each node in G using spectral decomposition.

Notes

Let $G = (V, E)$ be a simple undirected graph with n nodes and m edges, and A denote the adjacency matrix of G.

Let $G(r) = (V, E(r))$ be the graph resulting from removing all edges connected to node r but not the node itself.

The adjacency matrix for $G(r)$ is $A + E(r)$, where $E(r)$ has nonzeros only in row and column r.

The communicability betweenness of a node r is $\omega_r = \frac{1}{C} \sum_p \sum_q \frac{G_{pq}}{G_{pq}}, p \neq q, q \neq r,$

where $G_{pq} = (e^A - (e^{A+E(r)})_{pq}$ is the number of walks involving node r, $G_{pq} = (e^A)_{pq}$ is the number of closed walks starting at node p and ending at node q, and $C = (n - 1)^2 - (n - 1)$ is a normalization factor equal to the number of terms in the sum.

The resulting ω_r takes values between zero and one. The lower bound cannot be attained for a connected graph, and the upper bound is attained in the star graph.

References

Examples

```python
>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> cbc = nx.communicability_betweenness_centrality(G)
```

`estrada_index`

`estrada_index(G)`

Return the Estrada index of a the graph G.

Parameters

- `G` (graph) –

Returns

- `estrada index`

Return type

- `float`

Raises

- `NetworkXError` – If the graph is not undirected and simple.

See also:

- `estrada_index_exp()`

Notes

Let \(G = (V, E) \) be a simple undirected graph with \(n \) nodes and let \(\lambda_1 \leq \lambda_2 \leq \cdots \lambda_n \) be a non-increasing ordering of the eigenvalues of its adjacency matrix \(A \). The Estrada index is

\[
EE(G) = \sum_{j=1}^{n} e^{\lambda_j}.
\]

References

Examples

```python
>>> G=nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> ei=nx.estrada_index(G)
```

4.6.8 Load

| `load_centrality(G[, v, cutoff, normalized, ...])` | Compute load centrality for nodes. |
| `edge_load(G[, nodes, cutoff])` | Compute edge load. |

`load_centrality`

`load_centrality(G, v=None, cutoff=None, normalized=\text{True}, weight=\text{None})`

Compute load centrality for nodes.

The load centrality of a node is the fraction of all shortest paths that pass through that node.

Parameters

- \(G \) (graph) – A networkx graph
- \(\text{normalized} \) (\text{bool, optional}) – If True the betweenness values are normalized by \(b=b/(n-1)(n-2) \) where \(n \) is the number of nodes in \(G \).
- \(\text{weight} \) (\text{None or string, optional}) – If None, edge weights are ignored. Otherwise holds the name of the edge attribute used as weight.
- \(\text{cutoff} \) (\text{bool, optional}) – If specified, only consider paths of length \(\leq \text{cutoff} \).

Returns nodes – Dictionary of nodes with centrality as the value.

Return type dictionary

See also:

\`betweenness_centrality()\`
Notes

Load centrality is slightly different than betweenness. It was originally introduced by 52. For this load algorithm see 53.

References

edge_load

edge_load(G, nodes=None, cutoff=False)

Compute edge load.

WARNING:

This module is for demonstration and testing purposes.

4.6.9 Dispersion

dispersion(G, u=None, v=None, normalized=True, alpha=1.0, b=0.0, c=0.0)

Calculate dispersion between u and v in G.

A link between two actors (u and v) has a high dispersion when their mutual ties (s and t) are not well connected with each other.

Parameters

• G (graph) – A NetworkX graph.
• u (node, optional) – The source for the dispersion score (e.g. ego node of the network).
• v (node, optional) – The target of the dispersion score if specified.
• normalized (bool) – If True (default) normalize by the embeddedness of the nodes (u and v).

Returns nodes – If u (v) is specified, returns a dictionary of nodes with dispersion score for all “target” (”source”) nodes. If neither u nor v is specified, returns a dictionary of dictionaries for all nodes ‘u’ in the graph with a dispersion score for each node ‘v’.

Return type dictionary

Notes

This implementation follows Lars Backstrom and Jon Kleinberg 54. Typical usage would be to run dispersion on the ego network G_u if u were specified. Running dispersion() with neither u nor v specified can take

4.7 Chordal

Algorithms for chordal graphs.

A graph is chordal if every cycle of length at least 4 has a chord (an edge joining two nodes not adjacent in the cycle).

http://en.wikipedia.org/wiki/Chordal_graph

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>is_chordal(G)</td>
<td>Checks whether G is a chordal graph.</td>
</tr>
<tr>
<td>chordal_graph_cliques(G)</td>
<td>Returns the set of maximal cliques of a chordal graph.</td>
</tr>
<tr>
<td>chordal_graph_treewidth(G)</td>
<td>Returns the treewidth of the chordal graph G.</td>
</tr>
<tr>
<td>find_induced_nodes(G, s, t[, treewidth_bound])</td>
<td>Returns the set of induced nodes in the path from s to t.</td>
</tr>
</tbody>
</table>

4.7.1 is_chordal

is_chordal *(G)*
Checks whether G is a chordal graph.

A graph is chordal if every cycle of length at least 4 has a chord (an edge joining two nodes not adjacent in the cycle).

Parameters

- **G** *(graph)* – A NetworkX graph.

Returns

- **chordal** – True if G is a chordal graph and False otherwise.

Return type

- **bool**

Raises

- **NetworkXError** – The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. If the input graph is an instance of one of these classes, a NetworkXError is raised.

Examples

```python
>>> import networkx as nx
>>> e=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)]
>>> G=nx.Graph(e)
>>> nx.is_chordal(G)
True
```

Notes

The routine tries to go through every node following maximum cardinality search. It returns False when it finds that the separator for any node is not a clique. Based on the algorithms in 55.

References

4.7.2 chordal_graph_cliques

chordal_graph_cliques(G)
Returns the set of maximal cliques of a chordal graph.

The algorithm breaks the graph in connected components and performs a maximum cardinality search in each component to get the cliques.

Parameters G (graph) – A NetworkX graph

Returns cliques

Return type A set containing the maximal cliques in G.

Raises NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised.

Examples

```python
>>> import networkx as nx
>>> e = [(1,2), (1,3), (2,3), (2,4), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6), (7,8)]
>>> G = nx.Graph(e)
>>> G.add_node(9)
>>> setlist = nx.chordal_graph_cliques(G)
```

4.7.3 chordal_graph_treewidth

chordal_graph_treewidth(G)
Returns the treewidth of the chordal graph G.

Parameters G (graph) – A NetworkX graph

Returns treewidth – The size of the largest clique in the graph minus one.

Return type int

Raises NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised.

Examples

```python
>>> import networkx as nx
>>> e = [(1,2), (1,3), (2,3), (2,4), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6), (7,8)]
>>> G = nx.Graph(e)
>>> G.add_node(9)
>>> nx.chordal_graph_treewidth(G)
3
```
4.7.4 find_induced_nodes

find_induced_nodes \((G, s, t, \text{treewidth_bound}=9223372036854775807)\)

Returns the set of induced nodes in the path from \(s\) to \(t\).

Parameters

- \(G\) (graph) – A chordal NetworkX graph
- \(s\) (node) – Source node to look for induced nodes
- \(t\) (node) – Destination node to look for induced nodes
- \(\text{treewidth_bound}\) (float) – Maximum treewidth acceptable for the graph \(H\). The search for induced nodes will end as soon as the \text{treewidth_bound} is exceeded.

Returns \(I\) – The set of induced nodes in the path from \(s\) to \(t\) in \(G\)

Return type Set of nodes

Raises NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised.

Examples

```python
>>> import networkx as nx
>>> G=nx.Graph()
>>> G = nx.generators.classic.path_graph(10)
>>> I = nx.find_induced_nodes(G,1,9,2)
>>> list(I)
[1, 2, 3, 4, 5, 6, 7, 8, 9]
```

Notes

\(G\) must be a chordal graph and \((s,t)\) an edge that is not in \(G\).

If a \text{treewidth_bound} is provided, the search for induced nodes will end as soon as the \text{treewidth_bound} is exceeded.

The algorithm is inspired by Algorithm 4 in \(^{56}\). A formal definition of induced node can also be found on that reference.

References

4.8 Clique

4.8.1 Cliques

Find and manipulate cliques of graphs.

Note that finding the largest clique of a graph has been shown to be an NP-complete problem; the algorithms here could take a long time to run.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enumerate_all_cliques(G)</td>
<td>Returns all cliques in an undirected graph.</td>
</tr>
<tr>
<td>find_cliques(G)</td>
<td>Search for all maximal cliques in a graph.</td>
</tr>
<tr>
<td>make_max_clique_graph(G[, create_using, name])</td>
<td>Create the maximal clique graph of a graph.</td>
</tr>
<tr>
<td>make_clique_bipartite(G[, fpos, ...])</td>
<td>Create a bipartite clique graph from a graph.</td>
</tr>
<tr>
<td>graph_clique_number(G[, cliques])</td>
<td>Return the clique number (size of the largest clique) for G.</td>
</tr>
<tr>
<td>graph_number_of_cliques(G[, cliques])</td>
<td>Returns the number of maximal cliques in G.</td>
</tr>
<tr>
<td>node_clique_number(G[, nodes, cliques])</td>
<td>Returns the size of the largest maximal clique containing each given node.</td>
</tr>
<tr>
<td>number_of_cliques(G[, nodes, cliques])</td>
<td>Returns the number of maximal cliques for each node.</td>
</tr>
<tr>
<td>cliques_containing_node(G[, nodes, cliques])</td>
<td>Returns a list of cliques containing the given node.</td>
</tr>
</tbody>
</table>

4.8.2 enumerate_all_cliques

enumerate_all_cliques (G)

Returns all cliques in an undirected graph.

This method returns cliques of size (cardinality) \(k = 1, 2, 3, ..., \) \(\text{maxDegree} - 1 \).

Where \(\text{maxDegree} \) is the maximal degree of any node in the graph.

Parameters

- \(G \) (undirected graph)

Returns

generator of lists

Return type

generator of list for each clique.

Notes

To obtain a list of all cliques, use `list(enumerate_all_cliques(G))`.

Based on the algorithm published by Zhang et al. (2005)\(^{57}\) and adapted to output all cliques discovered.

This algorithm is not applicable on directed graphs.

This algorithm ignores self-loops and parallel edges as clique is not conventionally defined with such edges.

There are often many cliques in graphs. This algorithm however, hopefully, does not run out of memory since it only keeps candidate sublists in memory and continuously removes exhausted sublists.

References

4.8.3 find_cliques

find_cliques (G)

Search for all maximal cliques in a graph.

Maximal cliques are the largest complete subgraph containing a given node. The largest maximal clique is sometimes called the maximum clique.

Returns generator of lists

Return type: generator of member list for each maximal clique

See also:

find_cliques_recursive(), A()

Notes

To obtain a list of cliques, use list(find_cliques(G)).

Based on the algorithm published by Bron & Kerbosch (1973) as adapted by Tomita, Tanaka and Takahashi (2006) and discussed in Cazals and Karande (2008). The method essentially unrolls the recursion used in the references to avoid issues of recursion stack depth.

This algorithm is not suitable for directed graphs.

This algorithm ignores self-loops and parallel edges as clique is not conventionally defined with such edges.

There are often many cliques in graphs. This algorithm can run out of memory for large graphs.

References

4.8.4 make_max_clique_graph

make_max_clique_graph (G, create_using=None, name=None)

Create the maximal clique graph of a graph.

Finds the maximal cliques and treats these as nodes. The nodes are connected if they have common members in the original graph. Theory has done a lot with clique graphs, but I haven’t seen much on maximal clique graphs.

Notes

This should be the same as make_clique_bipartite followed by project_up, but it saves all the intermediate steps.

4.8.5 make_clique_bipartite

make_clique_bipartite (G, fpos=None, create_using=None, name=None)

Create a bipartite clique graph from a graph G.

Nodes of G are retained as the “bottom nodes” of B and cliques of G become “top nodes” of B. Edges are present if a bottom node belongs to the clique represented by the top node.

Returns a Graph with additional attribute dict B.node_type which is keyed by nodes to “Bottom” or “Top” appropriately.

if fpos is not None, a second additional attribute dict B.pos is created to hold the position tuple of each node for viewing the bipartite graph.

60 F. Cazals, C. Karande, A note on the problem of reporting maximal cliques, Theoretical Computer Science, Volume 407, Issues 1-3, 6 November 2008, Pages 564-568, [http://dx.doi.org/10.1016/j.tcs.2008.05.010]
4.8.6 graph_clique_number

graph_clique_number \((G, \text{cliques}=\text{None})\)
Return the clique number (size of the largest clique) for \(G\).
An optional list of cliques can be input if already computed.

4.8.7 graph_number_of_cliques

graph_number_of_cliques \((G, \text{cliques}=\text{None})\)
Returns the number of maximal cliques in \(G\).
An optional list of cliques can be input if already computed.

4.8.8 node_clique_number

node_clique_number \((G, \text{nodes}=\text{None}, \text{cliques}=\text{None})\)
Returns the size of the largest maximal clique containing each given node.
Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed.

4.8.9 number_of_cliques

number_of_cliques \((G, \text{nodes}=\text{None}, \text{cliques}=\text{None})\)
Returns the number of maximal cliques for each node.
Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed.

4.8.10 cliques_containing_node

cliques_containing_node \((G, \text{nodes}=\text{None}, \text{cliques}=\text{None})\)
Returns a list of cliques containing the given node.
Returns a single list or list of lists depending on input nodes. Optional list of cliques can be input if already computed.

4.9 Clustering

Algorithms to characterize the number of triangles in a graph.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>triangles(G[, nodes])</td>
<td>Compute the number of triangles.</td>
</tr>
<tr>
<td>transitivity(G)</td>
<td>Compute graph transitivity, the fraction of all possible triangles present in (G).</td>
</tr>
<tr>
<td>clustering(G[, nodes, weight])</td>
<td>Compute the clustering coefficient for nodes.</td>
</tr>
<tr>
<td>average_clustering(G[, nodes, weight, ...])</td>
<td>Compute the average clustering coefficient for the graph (G).</td>
</tr>
<tr>
<td>square_clustering(G[, nodes])</td>
<td>Compute the squares clustering coefficient for nodes.</td>
</tr>
</tbody>
</table>

4.9.1 triangles

triangles \((G, \text{nodes}=\text{None})\)
Compute the number of triangles.
Finds the number of triangles that include a node as one vertex.

Parameters

- **G (graph)** – A networkx graph
- **nodes (container of nodes, optional (default= all nodes in G))** – Compute triangles for nodes in this container.

Returns out – Number of triangles keyed by node label.

Return type dictionary

Examples

```python
>>> G = nx.complete_graph(5)
>>> print(nx.triangles(G, 0))
6
>>> print(nx.triangles(G))
{0: 6, 1: 6, 2: 6, 3: 6, 4: 6}
>>> print(list(nx.triangles(G, (0, 1)).values()))
[6, 6]
```

Notes

When computing triangles for the entire graph each triangle is counted three times, once at each node. Self loops are ignored.

4.9.2 transitivity

transitivity (G)

Compute graph transitivity, the fraction of all possible triangles present in G.

Possible triangles are identified by the number of “triads” (two edges with a shared vertex).

The transitivity is

\[T = \frac{3 \times \text{#triangles}}{\text{#triads}}. \]

Parameters **G (graph)** –

Returns out – Transitivity

Return type float

Examples

```python
>>> G = nx.complete_graph(5)
>>> print(nx.transitivity(G))
1.0
```
4.9.3 clustering

clustering *(G, nodes=None, weight=None)*

Compute the clustering coefficient for nodes.

For unweighted graphs, the clustering of a node \(u \) is the fraction of possible triangles through that node that exist,

\[
c_u = \frac{2T(u)}{\text{deg}(u)(\text{deg}(u) - 1)},
\]

where \(T(u) \) is the number of triangles through node \(u \) and \(\text{deg}(u) \) is the degree of \(u \).

For weighted graphs, the clustering is defined as the geometric average of the subgraph edge weights \(^{61}\),

\[
c_u = \frac{1}{\text{deg}(u)(\text{deg}(u) - 1))} \sum_{uv} (\hat{w}_{uv} \hat{w}_{uw} \hat{w}_{vw})^{1/3}.
\]

The edge weights \(\hat{w}_{uv} \) are normalized by the maximum weight in the network \(\hat{w}_{uv} = w_{uv} / \max(w) \).

The value of \(c_u \) is assigned to 0 if \(\text{deg}(u) < 2 \).

Parameters

- \(G \) (graph) –
- \(\text{nodes} \) (container of nodes, optional (default=all nodes in \(G \))) – Compute clustering for nodes in this container.
- \(\text{weight} \) (string or None, optional (default=None)) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns

- **out** – Clustering coefficient at specified nodes

Return type float, or dictionary

Examples

```python
>>> G=nx.complete_graph(5)
>>> print(nx.clustering(G,0))
1.0
>>> print(nx.clustering(G))
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}
```

Notes

Self loops are ignored.

References

4.9.4 average_clustering

average_clustering *(G, nodes=None, weight=None, count_zeros=True)*

Compute the average clustering coefficient for the graph \(G \).

The clustering coefficient for the graph is the average,

\[C = \frac{1}{n} \sum_{v \in G} c_v, \]

where \(n \) is the number of nodes in \(G \).

Parameters

- \(G \) (graph) –
- \(\text{nodes} \) (container of nodes, optional (default=all nodes in \(G \)) – Compute average clustering for nodes in this container.
- \(\text{weight} \) (string or None, optional (default=None)) – The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.
- \(\text{count_zeros} \) (bool) – If False include only the nodes with nonzero clustering in the average.

Returns

- \(\text{avg} \) – Average clustering

Return type float

Examples

```python
g=nx.complete_graph(5)
print(nx.average_clustering(G))
```

```
1.0
```

Notes

This is a space saving routine; it might be faster to use the clustering function to get a list and then take the average.

Self loops are ignored.

References

4.9.5 square_clustering

square_clustering \((G, \text{nodes}=\text{None})\)

Compute the squares clustering coefficient for nodes.

For each node return the fraction of possible squares that exist at the node 62

\[C_4(v) = \frac{\sum_{u=1}^{k_v} \sum_{w=u+1}^{k_v} q_v(u, w)}{\sum_{u=1}^{k_v} \sum_{w=u+1}^{k_v} [a_v(u, w) + q_v(u, w)]}, \]

where \(q_v(u, w) \) are the number of common neighbors of \(u \) and \(w \) other than \(v \) (ie squares), and \(a_v(u, w) = (k_u - (1 + q_v(u, w) + \theta_{uw}))(k_w - (1 + q_v(u, w) + \theta_{uw})), \) where \(\theta_{uw} = 1 \) if \(u \) and \(w \) are connected and 0 otherwise.

Parameters

NetworkX Reference, Release 1.10

- **G (graph)** –
- **nodes (container of nodes, optional (default=all nodes in G))** – Compute clustering for nodes in this container.

Returns c4 – A dictionary keyed by node with the square clustering coefficient value.

Return type dictionary

Examples

```python
>>> G=nx.complete_graph(5)
>>> print(nx.square_clustering(G,0))
1.0
>>> print(nx.square_clustering(G))
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}
```

Notes

While \(C_3(v)\) (triangle clustering) gives the probability that two neighbors of node \(v\) are connected with each other, \(C_4(v)\) is the probability that two neighbors of node \(v\) share a common neighbor different from \(v\). This algorithm can be applied to both bipartite and unipartite networks.

References

4.10 Coloring

greedy_color (G[, strategy, interchange]) – Color a graph using various strategies of greedy graph coloring.

4.10.1 greedy_color

greedy_color (G, strategy=<function strategy_largest_first>, interchange=False)

Color a graph using various strategies of greedy graph coloring. The strategies are described in \(^{63}\).

Attempts to color a graph using as few colors as possible, where no neighbours of a node can have same color as the node itself.

Parameters

- **G (NetworkX graph)** –
- **strategy (function(G, colors))** – A function that provides the coloring strategy, by returning nodes in the ordering they should be colored. \(G\) is the graph, and \(colors\) is a dict of the currently assigned colors, keyed by nodes.

You can pass your own ordering function, or use one of the built in:

- strategy_largest_first
- strategy_random_sequential
- strategy_smallest_last

– strategy_independent_set
– strategy_connected_sequential_bfs
– strategy_connected_sequential_dfs
– strategy_connected_sequential (alias of strategy_connected_sequential_bfs)
– strategy_saturation_largest_first (also known as DSATUR)

interchange (bool) – Will use the color interchange algorithm described by \(^{64}\) if set to true.

Note that saturation largest first and independent set do not work with interchange. Furthermore, if you use interchange with your own strategy function, you cannot rely on the values in the colors argument.

Returns

• A dictionary with keys representing nodes and values representing corresponding coloring.

Examples

```python
>>> G = nx.cycle_graph(4)
>>> d = nx.coloring.greedy_color(G, strategy=nx.coloring.strategy_largest_first)
>>> d in [{0: 0, 1: 1, 2: 0, 3: 1}, {0: 1, 1: 0, 2: 1, 3: 0}]
True
```

References

4.11 Communities

4.11.1 K-Clique

`k_clique_communities(G, k[, cliques])` Find k-clique communities in graph using the percolation method.

k_clique_communities

`k_clique_communities(G, k, cliques=None)` Find k-clique communities in graph using the percolation method.

A k-clique community is the union of all cliques of size k that can be reached through adjacent (sharing k-1 nodes) k-cliques.

Parameters

• **G** *(NetworkX graph)* –

• **k** *(int)* – Size of smallest clique

• **cliques** *(list or generator)* – Precomputed cliques (use networkx.find_cliques(G))

Returns

Return type Yields sets of nodes, one for each k-clique community.

Examples

```python
>>> G = nx.complete_graph(5)
>>> K5 = nx.convert_node_labels_to_integers(G,first_label=2)
>>> G.add_edges_from(K5.edges())
>>> c = list(nx.k_clique_communities(G, 4))
>>> list(c[0])
[0, 1, 2, 3, 4, 5, 6]
>>> list(nx.k_clique_communities(G, 6))
[]
```

References

4.12 Components

4.12.1 Connectivity

Connected components.

<table>
<thead>
<tr>
<th>is_connected(G)</th>
<th>Return True if the graph is connected, false otherwise.</th>
</tr>
</thead>
<tbody>
<tr>
<td>number_connected_components(G)</td>
<td>Return the number of connected components.</td>
</tr>
<tr>
<td>connected_components(G)</td>
<td>Generate connected components.</td>
</tr>
<tr>
<td>connected_component_subgraphs(G[, copy])</td>
<td>Generate connected components as subgraphs.</td>
</tr>
<tr>
<td>node_connected_component(G, n)</td>
<td>Return the nodes in the component of graph containing node n.</td>
</tr>
</tbody>
</table>

is_connected

is_connected(G)
Return True if the graph is connected, false otherwise.

Parameters
G (NetworkX Graph) – An undirected graph.

Returns
connected – True if the graph is connected, false otherwise.

Return type
bool

Examples

```python
>>> G = nx.path_graph(4)
>>> print(nx.is_connected(G))
True
```

See also:
connected_components()

Notes

For undirected graphs only.
number_connected_components

number_connected_components(\(G\))

Return the number of connected components.

Parameters

- \(G\) (*NetworkX graph*) – An undirected graph.

Returns

- \(n\) – Number of connected components

Return type

integer

See also:

connected_components()

Notes

For undirected graphs only.

connected_components

connected_components(\(G\))

Generate connected components.

Parameters

- \(G\) (*NetworkX graph*) – An undirected graph

Returns

- \(comp\) – A generator of sets of nodes, one for each component of \(G\).

Return type

generator of sets

Examples

Generate a sorted list of connected components, largest first.

```python
>>> G = nx.path_graph(4)
>>> G.add_path([10, 11, 12])
>>> [len(c) for c in sorted(nx.connected_components(G), key=len, reverse=True)]
[4, 3]
```

If you only want the largest connected component, it's more efficient to use max instead of sort.

```python
>>> largest_cc = max(nx.connected_components(G), key=len)
```

See also:

strongly_connected_components()

Notes

For undirected graphs only.
connected_component_subgraphs

`connected_component_subgraphs (G, copy=True)`
Generate connected components as subgraphs.

Parameters

- `G (NetworkX graph)` – An undirected graph.
- `copy (bool (default=True))` – If True make a copy of the graph attributes

Returns
- `comp` – A generator of graphs, one for each connected component of G.

Return type
generator

Examples

```python
>>> G = nx.path_graph(4)
>>> G.add_edge(5, 6)
>>> graphs = list(nx.connected_component_subgraphs(G))
```

If you only want the largest connected component, it’s more efficient to use `max` than sort.

```python
>>> Gc = max(nx.connected_component_subgraphs(G), key=len)
```

See also:
`connected_components()`

Notes

For undirected graphs only. Graph, node, and edge attributes are copied to the subgraphs by default.

node_connected_component

`node_connected_component (G, n)`
Return the nodes in the component of graph containing node n.

Parameters

- `G (NetworkX Graph)` – An undirected graph.
- `n (node label)` – A node in G

Returns
- `comp` – A set of nodes in the component of G containing node n.

Return type
set

See also:
`connected_components()`

Notes

For undirected graphs only.
4.12.2 Strong connectivity

Strongly connected components.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_strongly_connected(G)</code></td>
<td>Test directed graph for strong connectivity.</td>
</tr>
<tr>
<td><code>number_strongly_connected_components(G)</code></td>
<td>Return number of strongly connected components in graph.</td>
</tr>
<tr>
<td><code>strongly_connected_component_subgraphs(G[, copy])</code></td>
<td>Generate strongly connected components as subgraphs.</td>
</tr>
<tr>
<td><code>strongly_connected_components_recursive(G)</code></td>
<td>Generate nodes in strongly connected components of graph.</td>
</tr>
<tr>
<td><code>kosaraju_strongly_connected_components(G[, ...])</code></td>
<td>Generate nodes in strongly connected components of graph.</td>
</tr>
<tr>
<td><code>condensation(G[, scc])</code></td>
<td>Returns the condensation of G.</td>
</tr>
</tbody>
</table>

is_strongly_connected

is_strongly_connected(G)

Test directed graph for strong connectivity.

Parameters

- **G** (*NetworkX Graph*) – A directed graph.

Returns

- **connected** – True if the graph is strongly connected, False otherwise.

Return type

- **bool**

See also:

- `strongly_connected_components()`

Notes

For directed graphs only.

number_strongly_connected_components

number_strongly_connected_components(G)

Return number of strongly connected components in graph.

Parameters

- **G** (*NetworkX graph*) – A directed graph.

Returns

- **n** – Number of strongly connected components

Return type

- **integer**

See also:

- `connected_components()`

Notes

For directed graphs only.

strongly_connected_components

strongly_connected_components(G)

Generate nodes in strongly connected components of graph.
Parameters `G` (*NetworkX Graph*) – An directed graph.

Returns `comp` – A generator of sets of nodes, one for each strongly connected component of `G`.

Return type generator of sets

Raises `NetworkXNotImplemented` – If `G` is undirected.

Examples

Generate a sorted list of strongly connected components, largest first.

```python
>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([1, 2, 3])
>>> [len(c) for c in sorted(nx.strongly_connected_components(G),
... key=len, reverse=True)]
[4, 3]
```

If you only want the largest component, it’s more efficient to use `max` instead of `sort`.

```python
>>> largest = max(nx.strongly_connected_components(G), key=len)
```

See also:

`connected_components()`, `weakly_connected_components()`

Notes

Uses Tarjan’s algorithm with Nuutila’s modifications. Nonrecursive version of algorithm.

References

`strongly_connected_component_subgraphs`

`strongly_connected_component_subgraphs` (*G*, *copy=True*)

Generate strongly connected components as subgraphs.

Parameters

- `G` (*NetworkX Graph*) – A directed graph.
- `copy` (*boolean, optional*) – if `copy` is `True`, Graph, node, and edge attributes are copied to the subgraphs.

Returns `comp` – A generator of graphs, one for each strongly connected component of `G`.

Return type generator of graphs

Examples

Generate a sorted list of strongly connected components, largest first.

```python
>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([1, 2, 3])
>>> [len(Gc) for Gc in sorted(nx.strongly_connected_component_subgraphs(G),
... key=len, reverse=True)]
[4, 3]
```
If you only want the largest component, it’s more efficient to use max instead of sort.

```python
>>> Gc = max(nx.strongly_connected_component_subgraphs(G), key=len)
```

See also:

`connected_component_subgraphs()`, `weakly_connected_component_subgraphs()`

strongly_connected_components_recursive

strongly_connected_components_recursive(G)

Generate nodes in strongly connected components of graph.

Recursive version of algorithm.

Parameters

- `G` (*NetworkX Graph*) – An directed graph.

Returns

- `comp` – A generator of sets of nodes, one for each strongly connected component of `G`.

Return type

- generator of sets

Raises

- `NetworkXNotImplemented` – If `G` is undirected

Examples

Generate a sorted list of strongly connected components, largest first.

```python
>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([10, 11, 12])
>>> [len(c) for c in sorted(nx.strongly_connected_components_recursive(G),
...                           key=len, reverse=True)]
[4, 3]
```

If you only want the largest component, it’s more efficient to use max instead of sort.

```python
>>> largest = max(nx.strongly_connected_components_recursive(G), key=len)
```

See also:

`connected_components()`

Notes

Uses Tarjan’s algorithm with Nuutila’s modifications.

References

- `kosaraju_strongly_connected_components`
Raises NetworkXNotImplemented – If G is undirected.

Examples

Generate a sorted list of strongly connected components, largest first.

```python
g = nx.cycle_graph(4, create_using=nx.DiGraph())
g.add_cycle([10, 11, 12])
[c for c in sorted(nx.kosaraju_strongly_connected_components(g), key=len, reverse=True)]
```

[4, 3]

If you only want the largest component, it’s more efficient to use max instead of sort.

```python
largest = max(nx.kosaraju_strongly_connected_components(g), key=len)
```

See also:

connected_components(), weakly_connected_components()

Notes

Uses Kosaraju’s algorithm.

condensation

condensation(G, scc=None)

Returns the condensation of G.

The condensation of G is the graph with each of the strongly connected components contracted into a single node.

Parameters

- G (NetworkX DiGraph) – A directed graph.
- scc (list or generator (optional, default=None)) – Strongly connected components. If provided, the elements in scc must partition the nodes in G. If not provided, it will be calculated as scc=nx.strongly_connected_components(G).

Returns C – The condensation graph C of G. The node labels are integers corresponding to the index of the component in the list of strongly connected components of G. C has a graph attribute named ‘mapping’ with a dictionary mapping the original nodes to the nodes in C to which they belong. Each node in C also has a node attribute ‘members’ with the set of original nodes in G that form the SCC that the node in C represents.

Return type NetworkX DiGraph

Raises NetworkXNotImplemented – If G is not directed

Notes

After contracting all strongly connected components to a single node, the resulting graph is a directed acyclic graph.
4.12.3 Weak connectivity

Weakly connected components.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_weakly_connected(G)</code></td>
<td>Test directed graph for weak connectivity.</td>
</tr>
<tr>
<td><code>number_weakly_connected_components(G)</code></td>
<td>Return the number of weakly connected components in G.</td>
</tr>
<tr>
<td><code>weakly_connected_components(G)</code></td>
<td>Generate weakly connected components of G.</td>
</tr>
<tr>
<td><code>weakly_connected_component_subgraphs(G[, copy])</code></td>
<td>Generate weakly connected components as subgraphs.</td>
</tr>
</tbody>
</table>

`is_weakly_connected`

A directed graph is weakly connected if, and only if, the graph is connected when the direction of the edge between nodes is ignored.

Parameters

- `G` (*NetworkX Graph*) – A directed graph.

Returns

- `connected` – True if the graph is weakly connected, False otherwise.

Return type

- `bool`

See also

- `is_strongly_connected()`, `is_semiconnected()`, `is_connected()`

Notes

For directed graphs only.

`number_weakly_connected_components`

Return the number of weakly connected components in G.

Parameters

- `G` (*NetworkX graph*) – A directed graph.

Returns

- `n` – Number of weakly connected components

Return type

- `integer`

See also

- `connected_components()`

Notes

For directed graphs only.

`weakly_connected_components`

Generate weakly connected components of G.
Parameters

\(G\) (NetworkX graph) – A directed graph

Returns

comp – A generator of sets of nodes, one for each weakly connected component of \(G\).

Return type
generator of sets

Examples

Generate a sorted list of weakly connected components, largest first.

```python
>>> G = nx.path_graph(4, create_using=nx.DiGraph())
>>> G.add_path([10, 11, 12])
>>> [len(c) for c in sorted(nx.weakly_connected_components(G),
... key=len, reverse=True)]
[4, 3]
```

If you only want the largest component, it’s more efficient to use \texttt{max} instead of \texttt{sort}.

```python
>>> largest_cc = max(nx.weakly_connected_components(G), key=len)
```

See also:

strongly_connected_components()

Notes

For directed graphs only.

\texttt{weakly_connected_component_subgraphs}

\texttt{weakly_connected_component_subgraphs}(G, copy=True)
Generate weakly connected components as subgraphs.

Parameters

• \(G\) (NetworkX graph) – A directed graph.

• \texttt{copy} (bool (default=True)) – If True make a copy of the graph attributes

Returns

comp – A generator of graphs, one for each weakly connected component of \(G\).

Return type
generator

Examples

Generate a sorted list of weakly connected components, largest first.

```python
>>> G = nx.path_graph(4, create_using=nx.DiGraph())
>>> G.add_path([10, 11, 12])
>>> [len(c) for c in sorted(nx.weakly_connected_component_subgraphs(G),
... key=len, reverse=True)]
[4, 3]
```

If you only want the largest component, it’s more efficient to use \texttt{max} instead of \texttt{sort}.

```python
>>> Gc = max(nx.weakly_connected_component_subgraphs(G), key=len)
```
See also:

\texttt{strongly_connected_components()}, \texttt{connected_components()}

Notes

For directed graphs only. Graph, node, and edge attributes are copied to the subgraphs by default.

\section*{4.12.4 Attracting components}

Attracting components.

\begin{verbatim}
\begin{tabular}{ll}
_\texttt{is_attracting_component}(G)_ & Returns True if G consists of a single attracting component. \\
_\texttt{number_attracting_components}(G)_ & Returns the number of attracting components in G. \\
_\texttt{attracting_components}(G)_ & Generates a list of attracting components in G. \\
_\texttt{attracting_component_subgraphs}(G[, copy])_ & Generates a list of attracting component subgraphs from G.
\end{tabular}
\end{verbatim}

\textbf{is_attracting_component}

\textbf{is_attracting_component} (G)

Returns True if G consists of a single attracting component.

- \textbf{Parameters} G (\texttt{DiGraph}, \texttt{MultiDiGraph}) – The graph to be analyzed.
- \textbf{Returns} \texttt{attracting} – True if G has a single attracting component. Otherwise, False.
- \textbf{Return type} \texttt{bool}

See also:

\texttt{attracting_components()}, \texttt{number_attracting_components()}, \texttt{attracting_component_subgraphs()}

\textbf{number_attracting_components}

\textbf{number_attracting_components} (G)

Returns the number of attracting components in G.

- \textbf{Parameters} G (\texttt{DiGraph}, \texttt{MultiDiGraph}) – The graph to be analyzed.
- \textbf{Returns} \texttt{n} – The number of attracting components in G.
- \textbf{Return type} \texttt{int}

See also:

\texttt{attracting_components()}, \texttt{is_attracting_component()}, \texttt{attracting_component_subgraphs()}

\textbf{attracting_components}

\textbf{attracting_components} (G)

Generates a list of attracting components in G.

An attracting component in a directed graph G is a strongly connected component with the property that a random walker on the graph will never leave the component, once it enters the component.

4.12. Components 215
The nodes in attracting components can also be thought of as recurrent nodes. If a random walker enters the attractor containing the node, then the node will be visited infinitely often.

Parameters

- **G (DiGraph, MultiDiGraph)** – The graph to be analyzed.

Returns

- **attractors** – A generator of sets of nodes, one for each attracting component of G.

Return type

- generator of sets

See also:

- `number_attracting_components()`,
- `attracting_component_subgraphs()`

attracting_component_subgraphs

attracting_component_subgraphs (*G, copy=True*)

Generates a list of attracting component subgraphs from G.

Parameters

- **G (DiGraph, MultiDiGraph)** – The graph to be analyzed.

Returns

- **subgraphs** (*list*) – A list of node-induced subgraphs of the attracting components of G.
- **copy (bool)** – If copy is True, graph, node, and edge attributes are copied to the subgraphs.

See also:

- `attracting_components()`,
- `number_attracting_components()`,
- `is_attracting_component()`

4.12.5 Biconnected components

Biconnected components and articulation points.

<table>
<thead>
<tr>
<th>is_biconnected(G)</th>
<th>Return True if the graph is biconnected, False otherwise.</th>
</tr>
</thead>
<tbody>
<tr>
<td>biconnected_components(G)</td>
<td>Return a generator of sets of nodes, one set for each biconnected component</td>
</tr>
<tr>
<td>biconnected_component_edges(G)</td>
<td>Return a generator of lists of edges, one list for each biconnected component</td>
</tr>
<tr>
<td>biconnected_component_subgraphs(G[, copy])</td>
<td>Return a generator of graphs, one graph for each biconnected component</td>
</tr>
<tr>
<td>articulation_points(G)</td>
<td>Return a generator of articulation points, or cut vertices, of a graph.</td>
</tr>
</tbody>
</table>

is_biconnected

is_biconnected (*G*)

Return True if the graph is biconnected, False otherwise.

A graph is biconnected if, and only if, it cannot be disconnected by removing only one node (and all edges incident on that node). If removing a node increases the number of disconnected components in the graph, that node is called an articulation point, or cut vertex. A biconnected graph has no articulation points.

Parameters

- **G (NetworkX Graph)** – An undirected graph.

Returns

- **biconnected** – True if the graph is biconnected, False otherwise.

Return type

- bool

Raises

- NetworkXNotImplemented – If the input graph is not undirected.
Examples

```python
>>> G = nx.path_graph(4)
>>> print(nx.is_biconnected(G))
False
>>> G.add_edge(0, 3)
>>> print(nx.is_biconnected(G))
True
```

See also:

biconnected_components(), articulation_points(), biconnected_component_edges(), biconnected_component_subgraphs()

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.

References

biconnected_components

biconnected_components(G)

Return a generator of sets of nodes, one set for each biconnected component of the graph.

Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component. Those nodes are articulation points, or cut vertices. The removal of articulation points will increase the number of connected components of the graph.

Notice that by convention a dyad is considered a biconnected component.

Parameters

G (*NetworkX Graph*) – An undirected graph.

Returns

* nodes – Generator of sets of nodes, one set for each biconnected component.

Return type

generator

Raises

* NetworkXNotImplemented – If the input graph is not undirected.

Examples

```python
>>> G = nx.lollipop_graph(5, 1)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents = list(nx.biconnected_components(G))
>>> len(bicomponents)
2
>>> G.add_edge(0, 5)
>>> print(nx.is_biconnected(G))
```
True
>>> bicomponents = list(nx.biconnected_components(G))
>>> len(bicomponents)
1

You can generate a sorted list of biconnected components, largest first, using sort.

```python
>>> G.remove_edge(0, 5)
>>> [len(c) for c in sorted(nx.biconnected_components(G), key=len, reverse=True)]
[5, 2]
```

If you only want the largest connected component, it’s more efficient to use max instead of sort.

```python
>>> Gc = max(nx.biconnected_components(G), key=len)
```

See also:

- `is_biconnected()`, `articulation_points()`, `biconnected_component_edges()`, `biconnected_component_subgraphs()`

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node \(n \) is an articulation point if, and only if, there exists a subtree rooted at \(n \) such that there is no back edge from any successor of \(n \) that links to a predecessor of \(n \) in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.

References

biconnected_component_edges

biconnected_component_edges\((G)\)

Return a generator of lists of edges, one list for each biconnected component of the input graph.

Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component. Those nodes are articulation points, or cut vertices. However, each edge belongs to one, and only one, biconnected component.

Notice that by convention a dyad is considered a biconnected component.

Parameters

- \(G (\text{NetworkX Graph}) \) – An undirected graph.

Returns edges – Generator of lists of edges, one list for each bicomponent.

Return type
generator of lists

Raises

- `NetworkXNotImplemented` – If the input graph is not undirected.

Examples

```python
>>> G = nx.barbell_graph(4, 2)
>>> print(nx.is_biconnected(G))
False
```
```python
c>>> bicomponents_edges = list(nx.biconnected_component_edges(G))
c>>> len(bicomponents_edges)
c5
c>>> G.add_edge(2, 8)
c>>> print(nx.is_biconnected(G))
True
c>>> bicomponents_edges = list(nx.biconnected_component_edges(G))
c>>> len(bicomponents_edges)
c1
cSee also:

is_biconnected(), biconnected_components(), articulation_points(),
biconnected_component_subgraphs()

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive
depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node \( n \)
is an articulation point if, and only if, there exists a subtree rooted at \( n \) such that there is no back edge from
any successor of \( n \) that links to a predecessor of \( n \) in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed
consecutively between articulation points.

References

biconnected_component_subgraphs

biconnected_component_subgraphs \( (G, \text{copy} = True) \)
Return a generator of graphs, one graph for each biconnected component of the input graph.

Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that
node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component.
Those nodes are articulation points, or cut vertices. The removal of articulation points will increase the number
of connected components of the graph.

Notice that by convention a dyad is considered a biconnected component.

Parameters  \( G (\text{NetworkX Graph}) \) – An undirected graph.

Returns  graphs – Generator of graphs, one graph for each biconnected component.

Return type  generator

Raises  NetworkXNotImplemented – If the input graph is not undirected.

Examples

```python
c>>> G = nx.lollipop_graph(5, 1)
c>>> print(nx.is_biconnected(G))
False
c>>> bicomponents = list(nx.biconnected_component_subgraphs(G))
c>>> len(bicomponents)
c2
c>>> G.add_edge(0, 5)
c>>> print(nx.is_biconnected(G))

4.12. Components
You can generate a sorted list of biconnected components, largest first, using sort.

```python
g.remove_edge(0, 5)
>>> [len(c) for c in sorted(nx.biconnected_component_subgraphs(G), ...     key=len, reverse=True)]
[5, 2]
```

If you only want the largest connected component, it’s more efficient to use `max` instead of `sort`.

```python
Gc = max(nx.biconnected_component_subgraphs(G), key=len)
```

See also:
- `is_biconnected()`, `articulation_points()`, `biconnected_component_edges()`, `biconnected_components()`

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node \(n \) is an articulation point if, and only if, there exists a subtree rooted at \(n \) such that there is no back edge from any successor of \(n \) that links to a predecessor of \(n \) in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.

Graph, node, and edge attributes are copied to the subgraphs.

References

articulation_points

articulation_points\((G) \)

Return a generator of articulation points, or cut vertices, of a graph.

An articulation point or cut vertex is any node whose removal (along with all its incident edges) increases the number of connected components of a graph. An undirected connected graph without articulation points is biconnected. Articulation points belong to more than one biconnected component of a graph.

Notice that by convention a dyad is considered a biconnected component.

Parameters

- \(G \) (NetworkX Graph) – An undirected graph.

Returns

- articulation points – generator of nodes

Return type

generator

Raises

- NetworkXNotImplemented – If the input graph is not undirected.

Examples
G = nx.barbell_graph(4, 2)
print(nx.is_biconnected(G))
False
len(list(nx.articulation_points(G)))
4
G.add_edge(2, 8)
print(nx.is_biconnected(G))
True
len(list(nx.articulation_points(G)))
0

See also:

- `is_biconnected()`, `biconnected_components()`, `biconnected_component_edges()`, `biconnected_component_subgraphs()`

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.

References

4.12.6 Semiconnectedness

Semiconnectedness.

is_semiconnected(G) Return True if the graph is semiconnected, False otherwise.

is_semiconnected

Parameters G (NetworkX graph) – A directed graph.

Returns semiconnected – True if the graph is semiconnected, False otherwise.

Return type bool

Raises

- NetworkXNotImplemented – If the input graph is not directed.
- NetworkXPointlessConcept – If the graph is empty.
Examples

```python
>>> G = nx.path_graph(4, create_using=nx.DiGraph())
>>> print(nx.is_semiconnected(G))
True
>>> G = nx.DiGraph([(1, 2), (3, 2)])
>>> print(nx.is_semiconnected(G))
False
```

See also:

- `is_strongly_connected()`, `is_weakly_connected()`

4.13 Connectivity

Connectivity and cut algorithms

4.13.1 K-node-components

Moody and White algorithm for k-components

```python
k_components(G[, flow_func]) Returns the k-component structure of a graph G.
```

k_components

```python
k_components(G, flow_func=None) Returns the k-component structure of a graph G.
```

A k-component is a maximal subgraph of a graph G that has, at least, node connectivity k: we need to remove at least k nodes to break it into more components. k-components have an inherent hierarchical structure because they are nested in terms of connectivity: a connected graph can contain several 2-components, each of which can contain one or more 3-components, and so forth.

Parameters

- G (*NetworkX graph*) –
- flow_func (*function*) – Function to perform the underlying flow computations. Default value `edmonds_karp()`. This function performs better in sparse graphs with right tailed degree distributions. `shortest_augmenting_path()` will perform better in denser graphs.

Returns k_components – Dictionary with all connectivity levels k in the input Graph as keys and a list of sets of nodes that form a k-component of level k as values.

Return type dict

Raises NetworkXNotImplemented – If the input graph is directed.

Examples

```python
>>> # Petersen graph has 10 nodes and it is triconnected, thus all
>>> # nodes are in a single component on all three connectivity levels
```
>>> G = nx.petersen_graph()
>>> k_components = nx.k_components(G)

Notes

Moody and White [65] (appendix A) provide an algorithm for identifying k-components in a graph, which is based on Kanevsky’s algorithm [66] for finding all minimum-size node cut-sets of a graph (implemented in `all_node_cuts()` function):

1. Compute node connectivity, k, of the input graph G.
2. Identify all k-cutsets at the current level of connectivity using Kanevsky’s algorithm.
3. Generate new graph components based on the removal of these cutsets. Nodes in a cutset belong to both sides of the induced cut.
4. If the graph is neither complete nor trivial, return to 1; else end.

This implementation also uses some heuristics (see [67] for details) to speed up the computation.

See also:

node_connectivity(), `all_node_cuts()`

References

4.13.2 K-node-cutsets

Kanevsky all minimum node k cutsets algorithm.

```
all_node_cuts(G[, k, flow_func])  Returns all minimum k cutsets of an undirected graph G.
```

Parameters

- `G` *(NetworkX graph)* – Undirected graph
- `k` *(Integer)* – Node connectivity of the input graph. If k is None, then it is computed. Default value: None.

References

4.13. Connectivity 223
• **flow_func** (function) – Function to perform the underlying flow computations. Default value edmonds_karp. This function performs better in sparse graphs with right tailed degree distributions. shortest_augmenting_path will perform better in denser graphs.

Returns cuts – Each node cutset has cardinality equal to the node connectivity of the input graph.

Return type a generator of node cutsets

Examples

```python
>>> # A two-dimensional grid graph has 4 cutsets of cardinality 2
>>> G = nx.grid_2d_graph(5, 5)
>>> cutsets = list(nx.all_node_cuts(G))
>>> len(cutsets)
4
>>> all(2 == len(cutset) for cutset in cutsets)
True
>>> nx.node_connectivity(G)
2
```

Notes

This implementation is based on the sequential algorithm for finding all minimum-size separating vertex sets in a graph¹. The main idea is to compute minimum cuts using local maximum flow computations among a set of nodes of highest degree and all other non-adjacent nodes in the Graph. Once we find a minimum cut, we add an edge between the high degree node and the target node of the local maximum flow computation to make sure that we will not find that minimum cut again.

See also:

node_connectivity(), edmonds_karp(), shortest_augmenting_path()

References

4.13.3 Flow-based Connectivity

Flow based connectivity algorithms

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>average_node_connectivity(G[, flow_func])</code></td>
<td>Returns the average connectivity of a graph G.</td>
</tr>
<tr>
<td><code>all_pairs_node_connectivity(G[, nbunch, ...])</code></td>
<td>Compute node connectivity between all pairs of nodes of G.</td>
</tr>
<tr>
<td><code>edge_connectivity(G[, s, t, flow_func])</code></td>
<td>Returns the edge connectivity of the graph or digraph G.</td>
</tr>
<tr>
<td><code>local_edge_connectivity(G, u, v[, ...])</code></td>
<td>Returns local edge connectivity for nodes s and t in G.</td>
</tr>
<tr>
<td><code>local_node_connectivity(G[, s, t[, ...]])</code></td>
<td>Computes local node connectivity for nodes s and t.</td>
</tr>
<tr>
<td><code>node_connectivity(G[, s, t, flow_func])</code></td>
<td>Returns node connectivity for a graph or digraph G.</td>
</tr>
</tbody>
</table>

average_node_connectivity

 average_node_connectivity (G, flow_func=None)

Returns the average connectivity of a graph G.

The average connectivity \(\bar{\kappa} \) of a graph G is the average of local node connectivity over all pairs of nodes of G.¹⁰⁹

\[\bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_G(u, v)}{\binom{n}{2}} \]

Parameters

- \(G \) (*NetworkX graph*) – Undirected graph
- `flow_func` (*function*) – A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see `maximum_flow()` for details). If `flow_func` is None, the default maximum flow function (`edmonds_karp()`) is used. See `local_node_connectivity()` for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

Returns \(\bar{\kappa} \) – Average node connectivity

Return type `float`

See also:

- `local_node_connectivity()`, `node_connectivity()`, `edge_connectivity()`, `maximum_flow()`, `edmonds_karp()`, `preflow_push()`, `shortest_augmenting_path()`

References

- *all_pairs_node_connectivity*

all_pairs_node_connectivity \((G, nbunch=None, flow_func=None)\)

Compute node connectivity between all pairs of nodes of \(G \).

Parameters

- \(G \) (*NetworkX graph*) – Undirected graph
- `nbunch` (*container*) – Container of nodes. If provided node connectivity will be computed only over pairs of nodes in nbunch.
- `flow_func` (*function*) – A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see `maximum_flow()` for details). If `flow_func` is None, the default maximum flow function (`edmonds_karp()`) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

Returns `all_pairs` – A dictionary with node connectivity between all pairs of nodes of \(G \), or in `nbunch` if provided.

Return type `dict`

See also:

- `local_node_connectivity()`, `edge_connectivity()`, `local_edge_connectivity()`, `maximum_flow()`, `edmonds_karp()`, `preflow_push()`, `shortest_augmenting_path()`

edge_connectivity

edge_connectivity(G, s=None, t=None, flow_func=None)

Returns the edge connectivity of the graph or digraph G.

The edge connectivity is equal to the minimum number of edges that must be removed to disconnect G or render it trivial. If source and target nodes are provided, this function returns the local edge connectivity: the minimum number of edges that must be removed to break all paths from source to target in G.

Parameters

- G (NetworkX graph) – Undirected or directed graph
- s (node) – Source node. Optional. Default value: None.
- t (node) – Target node. Optional. Default value: None.
- flow_func (function) – A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

Returns K – Edge connectivity for G, or local edge connectivity if source and target were provided

Return type integer

Examples

```python
>>> # Platonic icosahedral graph is 5-edge-connected
>>> G = nx.icosahedral_graph()
>>> nx.edge_connectivity(G)
5
```

You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm shortest_augmenting_path() will usually perform better than the default edmonds_karp(), which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```python
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> nx.edge_connectivity(G, flow_func=shortest_augmenting_path)
5
```

If you specify a pair of nodes (source and target) as parameters, this function returns the value of local edge connectivity.

```python
>>> nx.edge_connectivity(G, 3, 7)
5
```

If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See local_edge_connectivity() for details.
Notes

This is a flow based implementation of global edge connectivity. For undirected graphs the algorithm works by finding a ‘small’ dominating set of nodes of G (see algorithm 7 in 70) and computing local maximum flow (see \texttt{local_edge_connectivity()}) between an arbitrary node in the dominating set and the rest of nodes in it. This is an implementation of algorithm 6 in 1. For directed graphs, the algorithm does n calls to the maximum flow function. This is an implementation of algorithm 8 in 1.

See also:

\texttt{local_edge_connectivity()}, \texttt{local_node_connectivity()}, \texttt{node_connectivity()}, \texttt{maximum_flow()}, \texttt{edmonds_karp()}, \texttt{preflow_push()}, \texttt{shortest_augmenting_path()}

References

local_edge_connectivity

\texttt{local_edge_connectivity (G, u, v, flow_func=None, auxiliary=None, residual=None, cutoff=None)}

Returns local edge connectivity for nodes s and t in G.

Local edge connectivity for two nodes s and t is the minimum number of edges that must be removed to disconnect them.

This is a flow based implementation of edge connectivity. We compute the maximum flow on an auxiliary digraph build from the original network (see below for details). This is equal to the local edge connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem) 71.

Parameters

- \texttt{G (NetworkX graph)} – Undirected or directed graph
- \texttt{s (node)} – Source node
- \texttt{t (node)} – Target node
- \texttt{flow_func (function)} – A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see \texttt{maximum_flow()} for details). If \texttt{flow_func} is None, the default maximum flow function (\texttt{edmonds_karp()}) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.
- \texttt{auxiliary (NetworkX DiGraph)} – Auxiliary digraph for computing flow based edge connectivity. If provided it will be reused instead of recreated. Default value: None.
- \texttt{residual (NetworkX DiGraph)} – Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None.
- \texttt{cutoff (integer, float)} – If specified, the maximum flow algorithm will terminate when the flow value reaches or exceeds the cutoff. This is only for the algorithms that support the cutoff parameter: \texttt{edmonds_karp()} and \texttt{shortest_augmenting_path()}. Other algorithms will ignore this parameter. Default value: None.

Returns \texttt{K} – local edge connectivity for nodes s and t.

Return type integer

70 Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

71 Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

4.13. Connectivity 227
Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package:

```python
>>> from networkx.algorithms.connectivity import local_edge_connectivity
```

We use in this example the platonic icosahedral graph, which has edge connectivity 5.

```python
>>> G = nx.icosahedral_graph()
>>> local_edge_connectivity(G, 0, 6)
5
```

If you need to compute local connectivity on several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for edge connectivity, and the residual network for the underlying maximum flow computation.

Example of how to compute local edge connectivity among all pairs of nodes of the platonic icosahedral graph reusing the data structures.

```python
>>> import itertools

>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (...

>>> # The function for building the auxiliary digraph
>>> H = build_auxiliary_edge_connectivity(G)

>>> # And the function for building the residual network from the
>>> # flow package
>>> R = build_residual_network(H, 'capacity')

>>> result = dict.fromkeys(G, dict())

>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):

>>>     k = local_edge_connectivity(G, u, v, auxiliary=H, residual=R)

>>>     result[u][v] = k

>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True
```

You can also use alternative flow algorithms for computing edge connectivity. For instance, in dense networks the algorithm `shortest_augmenting_path()` will usually perform better than the default `edmonds_karp()` which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```python
>>> from networkx.algorithms.flow import shortest_augmenting_path

>>> local_edge_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
5
```

Notes

This is a flow based implementation of edge connectivity. We compute the maximum flow using, by default, the `edmonds_karp()` algorithm on an auxiliary digraph build from the original input graph:

If the input graph is undirected, we replace each edge \((u, v)\) with two reciprocal arcs \((u, v)\) and \((v, u)\) and then we set the attribute ‘capacity’ for each arc to 1. If the input graph is directed we simply add the ‘capacity’ attribute. This is an implementation of algorithm 1 in \(^1\).
The maximum flow in the auxiliary network is equal to the local edge connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem).

See also:

edge_connectivity(), local_node_connectivity(), node_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

local_node_connectivity

local_node_connectivity(G, s, t, flow_func=None, auxiliary=None, residual=None, cutoff=None)

Computes local node connectivity for nodes s and t.

Local node connectivity for two non adjacent nodes s and t is the minimum number of nodes that must be removed (along with their incident edges) to disconnect them.

This is a flow based implementation of node connectivity. We compute the maximum flow on an auxiliary digraph build from the original input graph (see below for details).

Parameters

- G (NetworkX graph) – Undirected graph
- s (node) – Source node
- t (node) – Target node
- flow_func (function) – A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.
- auxiliary (NetworkX DiGraph) – Auxiliary digraph to compute flow based node connectivity. It has to have a graph attribute called mapping with a dictionary mapping node names in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default value: None.
- residual (NetworkX DiGraph) – Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None.
- cutoff (integer, float) – If specified, the maximum flow algorithm will terminate when the flow value reaches or exceeds the cutoff. This is only for the algorithms that support the cutoff parameter: edmonds_karp() and shortest_augmenting_path(). Other algorithms will ignore this parameter. Default value: None.

Returns K – local node connectivity for nodes s and t

Return type integer

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package:
>>> from networkx.algorithms.connectivity import local_node_connectivity

We use in this example the platonic icosahedral graph, which has node connectivity 5.

```python
>>> G = nx.icosahedral_graph()
>>> local_node_connectivity(G, 0, 6)
5
```

If you need to compute local connectivity on several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for node connectivity, and the residual network for the underlying maximum flow computation.

Example of how to compute local node connectivity among all pairs of nodes of the platonic icosahedral graph reusing the data structures.

```python
>>> import itertools

>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (build_auxiliary_node_connectivity)

>>> H = build_auxiliary_node_connectivity(G)

>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network

>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')

>>> result = dict.fromkeys(G, dict())

>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
...     k = local_node_connectivity(G, u, v, auxiliary=H, residual=R)
...     result[u][v] = k
...     all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True
```

You can also use alternative flow algorithms for computing node connectivity. For instance, in dense networks the algorithm `shortest_augmenting_path()` will usually perform better than the default `edmonds_karp()` which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```python
>>> from networkx.algorithms.flow import shortest_augmenting_path

>>> local_node_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
5
```

Notes

This is a flow based implementation of node connectivity. We compute the maximum flow using, by default, the `edmonds_karp()` algorithm (see: `maximum_flow()`) on an auxiliary digraph build from the original input graph:

For an undirected graph G having n nodes and m edges we derive a directed graph H with $2n$ nodes and $2m + n$ arcs by replacing each original node v with two nodes v_A, v_B linked by an (internal) arc in H. Then for each edge (u, v) in G we add two arcs (u_B, v_A) and (v_B, u_A) in H. Finally we set the attribute capacity = 1 for each arc in H.

72 Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and Erlebach, ‘Network Analysis: Method-
For a directed graph G having n nodes and m arcs we derive a directed graph H with $2n$ nodes and $m + n$ arcs by replacing each original node v with two nodes v_A, v_B linked by an (internal) arc (v_A, v_B) in H. Then for each arc (u, v) in G we add one arc (u_B, v_A) in H. Finally we set the attribute capacity $= 1$ for each arc in H.

This is equal to the local node connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut.

See also:

- `local_edge_connectivity()`, `node_connectivity()`, `minimum_node_cut()`, `maximum_flow()`, `edmonds_karp()`, `preflow_push()`, `shortest_augmenting_path()`

References

node_connectivity

`node_connectivity(G, s=None, t=None, flow_func=None)`

Returns node connectivity for a graph or digraph G.

Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it trivial. If source and target nodes are provided, this function returns the local node connectivity: the minimum number of nodes that must be removed to break all paths from source to target in G.

Parameters

- G (*NetworkX graph*) – Undirected graph
- s (*node*) – Source node. Optional. Default value: None.
- t (*node*) – Target node. Optional. Default value: None.
- $flow_func$ (*function*) – A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see `maximum_flow()` for details). If $flow_func$ is None, the default maximum flow function ($edmonds_karp()$) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

Returns K – Node connectivity of G, or local node connectivity if source and target are provided.

Return type integer

Examples

```python
>>> # Platonic icosahedral graph is 5-node-connected
>>> G = nx.icosahedral_graph()
>>> nx.node_connectivity(G)
5
```

You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm `shortest_augmenting_path()` will usually perform better than the default `edmonds_karp()`, which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

If you specify a pair of nodes (source and target) as parameters, this function returns the value of local node connectivity.

```python
>>> nx.node_connectivity(G, 3, 7)
5
```

If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See `local_node_connectivity()` for details.

Notes

This is a flow based implementation of node connectivity. The algorithm works by solving $O((n - \delta - 1 + \delta(\delta - 1)/2))$ maximum flow problems on an auxiliary digraph. Where δ is the minimum degree of G. For details about the auxiliary digraph and the computation of local node connectivity see `local_node_connectivity()`.

This implementation is based on algorithm 11 in 73.

See also:

- `local_node_connectivity()`, `edge_connectivity()`, `maximum_flow()`, `edmonds_karp()`, `preflow_push()`, `shortest_augmenting_path()`

References

4.13.4 Flow-based Minimum Cuts

Flow based cut algorithms

- `minimum_edge_cut(G[, s, t, flow_func])` Returns a set of edges of minimum cardinality that disconnects G.
- `minimum_node_cut(G[, s, t, flow_func])` Returns a set of nodes of minimum cardinality that disconnects G.
- `minimum_st_edge_cut(G, s, t[, flow_func, ...])` Returns the edges of the cut-set of a minimum (s, t)-cut.
- `minimum_st_node_cut(G, s, t[, flow_func, ...])` Returns a set of nodes of minimum cardinality that disconnect source from target.

minimum_edge_cut

`minimum_edge_cut(G, s=None, t=None, flow_func=None)`

Returns a set of edges of minimum cardinality that disconnects G.

If source and target nodes are provided, this function returns the set of edges of minimum cardinality that, if removed, would break all paths among source and target in G. If not, it returns a set of edges of minimum cardinality that disconnects G.

Parameters

- G (*NetworkX graph*) –
- s (*node*) – Source node. Optional. Default value: None.
- t (*node*) – Target node. Optional. Default value: None.

73 Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
• **flow_func** *(function)* – A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see `maximum_flow()` for details). If `flow_func` is None, the default maximum flow function (`edmonds_karp()`) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

Returns cutset – Set of edges that, if removed, would disconnect G. If source and target nodes are provided, the set contains the edges that if removed, would destroy all paths between source and target.

Return type set

Examples

```python
>>> # Platonic icosahedral graph has edge connectivity 5
>>> G = nx.icosahedral_graph()
>>> len(nx.minimum_edge_cut(G))
5
```

You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm `shortest_augmenting_path()` will usually perform better than the default `edmonds_karp()`, which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```python
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(nx.minimum_edge_cut(G, flow_func=shortest_augmenting_path))
5
```

If you specify a pair of nodes (source and target) as parameters, this function returns the value of local edge connectivity.

```python
>>> nx.edge_connectivity(G, 3, 7)
5
```

If you need to perform several local computations among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See `local_edge_connectivity()` for details.

Notes

This is a flow based implementation of minimum edge cut. For undirected graphs the algorithm works by finding a ‘small’ dominating set of nodes of G (see algorithm 7 in reference) and computing the maximum flow between an arbitrary node in the dominating set and the rest of nodes in it. This is an implementation of algorithm 6 in reference. For directed graphs, the algorithm does n calls to the max flow function. It is an implementation of algorithm 8 in reference.

See also:

`minimum_st_edge_cut()`, `minimum_node_cut()`, `stoer_wagner()`, `node_connectivity()`, `edge_connectivity()`, `maximum_flow()`, `edmonds_karp()`, `preflow_push()`, `shortest_augmenting_path()`

74 Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
minimum_node_cut

minimum_node_cut \((G, s=\text{None}, t=\text{None}, \text{flow_func=\text{None}})\)

Returns a set of nodes of minimum cardinality that disconnects \(G\).

If source and target nodes are provided, this function returns the set of nodes of minimum cardinality that, if removed, would destroy all paths among source and target in \(G\). If not, it returns a set of nodes of minimum cardinality that disconnects \(G\).

Parameters

- \(G\) (NetworkX graph)
- \(s\) (node) – Source node. Optional. Default value: None.
- \(t\) (node) – Target node. Optional. Default value: None.
- \(\text{flow_func}\) (function) – A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see \text{maximum_flow()}\ for details). If \text{flow_func} is None, the default maximum flow function (\text{edmonds_karp()}\) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.

Returns \(\text{cutset}\) – Set of nodes that, if removed, would disconnect \(G\). If source and target nodes are provided, the set contains the nodes that if removed, would destroy all paths between source and target.

Return type set

Examples

```python
>>> # Platonic icosahedral graph has node connectivity 5
>>> G = nx.icosahedral_graph()
>>> node_cut = nx.minimum_node_cut(G)
>>> len(node_cut)
5
```

You can use alternative flow algorithms for the underlying maximum flow computation. In dense networks the algorithm \text{shortest_augmenting_path()}\ will usually perform better than the default \text{edmonds_karp()}\, which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```python
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> node_cut == nx.minimum_node_cut(G, flow_func=shortest_augmenting_path)
True
```

If you specify a pair of nodes (source and target) as parameters, this function returns a local st node cut.

```python
>>> len(nx.minimum_node_cut(G, 3, 7))
5
```

If you need to perform several local st cuts among different pairs of nodes on the same graph, it is recommended that you reuse the data structures used in the maximum flow computations. See \text{minimum_st_node_cut()}\ for details.
Notes

This is a flow based implementation of minimum node cut. The algorithm is based in solving a number of maximum flow computations to determine the capacity of the minimum cut on an auxiliary directed network that corresponds to the minimum node cut of G. It handles both directed and undirected graphs. This implementation is based on algorithm 11 in [75].

See also:

minimum_st_node_cut(), minimum_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

minimum_st_edge_cut

minimum_st_edge_cut\((G, s, t, flow_func=None, auxiliary=None, residual=None)\)

Returns the edges of the cut-set of a minimum \((s, t)\)-cut.

This function returns the set of edges of minimum cardinality that, if removed, would destroy all paths among source and target in G. Edge weights are not considered.

Parameters

- \(G\) (NetworkX graph) – Edges of the graph are expected to have an attribute called ‘capacity’. If this attribute is not present, the edge is considered to have infinite capacity.
- \(s\) (node) – Source node for the flow.
- \(t\) (node) – Sink node for the flow.
- auxiliary (NetworkX DiGraph) – Auxiliary digraph to compute flow based node connectivity. It has to have a graph attribute called mapping with a dictionary mapping node names in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default value: None.
- flow_func (function) – A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see maximum_flow() for details). If flow_func is None, the default maximum flow function (edmonds_karp()) is used. See node_connectivity() for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.
- residual (NetworkX DiGraph) – Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None.

Returns cutset – Set of edges that, if removed from the graph, will disconnect it.

Return type set

See also:

minimum_cut(), minimum_node_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package:

```python
>>> from networkx.algorithms.connectivity import minimum_st_edge_cut
```

We use in this example the platonic icosahedral graph, which has edge connectivity 5.

```python
>>> G = nx.icosahedral_graph()
>>> len(minimum_st_edge_cut(G, 0, 6))
5
```

If you need to compute local edge cuts on several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for edge connectivity, and the residual network for the underlying maximum flow computation.

Example of how to compute local edge cuts among all pairs of nodes of the platonic icosahedral graph reusing the data structures.

```python
>>> import itertools

>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (...
...     build_auxiliary_edge_connectivity)
>>> H = build_auxiliary_edge_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> result = dict.fromkeys(G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
...     k = len(minimum_st_edge_cut(G, u, v, auxiliary=H, residual=R))
...     result[u][v] = k
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True
```

You can also use alternative flow algorithms for computing edge cuts. For instance, in dense networks the algorithm `shortest_augmenting_path()` will usually perform better than the default `edmonds_karp()` which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```python
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(minimum_st_edge_cut(G, 0, 6, flow_func=shortest_augmenting_path))
5
```

minimum_st_node_cut

```python
minimum_st_node_cut (G, s, t, flow_func=None, auxiliary=None, residual=None)
```

Returns a set of nodes of minimum cardinality that disconnect source from target in G.

This function returns the set of nodes of minimum cardinality that, if removed, would destroy all paths among source and target in G.

Parameters
• **G** *(NetworkX graph)* –
• **s** *(node)* – Source node.
• **t** *(node)* – Target node.
• **flow_func** *(function)* – A function for computing the maximum flow among a pair of nodes. The function has to accept at least three parameters: a Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see `maximum_flow()` for details). If `flow_func` is None, the default maximum flow function (`edmonds_karp()`) is used. See below for details. The choice of the default function may change from version to version and should not be relied on. Default value: None.
• **auxiliary** *(NetworkX DiGraph)* – Auxiliary digraph to compute flow based node connectivity. It has to have a graph attribute called mapping with a dictionary mapping node names in G and in the auxiliary digraph. If provided it will be reused instead of recreated. Default value: None.
• **residual** *(NetworkX DiGraph)* – Residual network to compute maximum flow. If provided it will be reused instead of recreated. Default value: None.

Returns **cutset** – Set of nodes that, if removed, would destroy all paths between source and target in **G**.

Return type set

Examples

This function is not imported in the base NetworkX namespace, so you have to explicitly import it from the connectivity package:

```python
>>> from networkx.algorithms.connectivity import minimum_st_node_cut
```

We use in this example the platonic icosahedral graph, which has node connectivity 5.

```python
>>> G = nx.icosahedral_graph()
>>> len(minimum_st_node_cut(G, 0, 6))
5
```

If you need to compute local st cuts between several pairs of nodes in the same graph, it is recommended that you reuse the data structures that NetworkX uses in the computation: the auxiliary digraph for node connectivity and node cuts, and the residual network for the underlying maximum flow computation.

Example of how to compute local st node cuts reusing the data structures:

```python
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import 
...     build_auxiliary_node_connectivity
>>> H = build_auxiliary_node_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> len(minimum_st_node_cut(G, 0, 6, auxiliary=H, residual=R))
5
```
You can also use alternative flow algorithms for computing minimum st node cuts. For instance, in dense networks the algorithm `shortest_augmenting_path()` will usually perform better than the default `edmonds_karp()` which is faster for sparse networks with highly skewed degree distributions. Alternative flow functions have to be explicitly imported from the flow package.

```python
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(minimum_st_node_cut(G, 0, 6, flow_func=shortest_augmenting_path))
5
```

Notes

This is a flow based implementation of minimum node cut. The algorithm is based in solving a number of maximum flow computations to determine the capacity of the minimum cut on an auxiliary directed network that corresponds to the minimum node cut of G. It handles both directed and undirected graphs. This implementation is based on algorithm 11 in

See also:

`minimum_node_cut()`, `minimum_edge_cut()`, `stoer_wagner()`, `node_connectivity()`, `edge_connectivity()`, `maximum_flow()`, `edmonds_karp()`, `preflow_push()`, `shortest_augmenting_path()`

References

4.13.5 Stoer-Wagner minimum cut

Stoer-Wagner minimum cut algorithm.

```
stoer_wagner(G[, weight, heap])
```

Returns the weighted minimum edge cut using the Stoer-Wagner algorithm.

stoer_wagner

```
stoer_wagner (G, weight='weight', heap=<class 'networkx.utils.heaps.BinaryHeap'>)
```

Returns the weighted minimum edge cut using the Stoer-Wagner algorithm.

Determine the minimum edge cut of a connected graph using the Stoer-Wagner algorithm. In weighted cases, all weights must be nonnegative.

The running time of the algorithm depends on the type of heaps used:

<table>
<thead>
<tr>
<th>Type of heap</th>
<th>Running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary heap</td>
<td>$O(n(m + n) \log n)$</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>$O(nm + n^2 \log n)$</td>
</tr>
<tr>
<td>Pairing heap</td>
<td>$O(2^{2\log \log n} nm + n^2 \log n)$</td>
</tr>
</tbody>
</table>

Parameters

- **G (NetworkX graph)** – Edges of the graph are expected to have an attribute named by the weight parameter below. If this attribute is not present, the edge is considered to have unit weight.

• **weight** (*string*) – Name of the weight attribute of the edges. If the attribute is not present, unit weight is assumed. Default value: ‘weight’.

• **heap** (*class*) – Type of heap to be used in the algorithm. It should be a subclass of MinHeap or implement a compatible interface.

 If a stock heap implementation is to be used, BinaryHeap is recommended over PairingHeap for Python implementations without optimized attribute accesses (e.g., CPython) despite a slower asymptotic running time. For Python implementations with optimized attribute accesses (e.g., PyPy), PairingHeap provides better performance. Default value: BinaryHeap.

Returns

• **cut_value** (*integer or float*) – The sum of weights of edges in a minimum cut.

• **partition** (*pair of node lists*) – A partitioning of the nodes that defines a minimum cut.

Raises

• NetworkXNotImplemented – If the graph is directed or a multigraph.

• NetworkXError – If the graph has less than two nodes, is not connected or has a negative-weighted edge.

Examples

```python
g = nx.Graph()
g.add_edge('x','a', weight=3)
g.add_edge('x','b', weight=1)
g.add_edge('a','c', weight=3)
g.add_edge('b','c', weight=5)
g.add_edge('b','d', weight=4)
g.add_edge('d','e', weight=2)
g.add_edge('c','y', weight=2)
g.add_edge('e','y', weight=3)
```

```python
cut_value, partition = nx.stoer_wagner(g)
cut_value
```

4

4.13.6 Util for flow-based connectivity

Utilities for connectivity package

```python
build_auxiliary_edge_connectivity(G)  # Auxiliary digraph for computing flow based edge connectivity
build_auxiliary_node_connectivity(G)  # Creates a directed graph D from an undirected graph G to compute flow based connectivity
```

build_auxiliary_edge_connectivity

Auxiliary digraph for computing flow based edge connectivity

If the input graph is undirected, we replace each edge

(\(u, v\))

with two reciprocal arcs

(\(u, v\)) and

(\(v, u\)) and then we set the attribute ‘capacity’ for each arc to 1. If the input graph is directed we simply add the ‘capacity’ attribute. Part of algorithm 1 in 77.

77 Abdol-Hossein Esfahanian. Connectivity Algorithms. (this is a chapter, look for the reference of the book).
build_auxiliary_node_connectivity

build_auxiliary_node_connectivity *(G)*

Creates a directed graph D from an undirected graph G to compute flow based node connectivity.

For an undirected graph G having *n* nodes and *m* edges we derive a directed graph D with 2*n* nodes and 2*m* + *n* arcs by replacing each original node *v* with two nodes *vA*, *vB* linked by an (internal) arc in D. Then for each edge (*u*, *v*) in G we add two arcs (*uB*, *vA* and (*vB*, *uA*) in D. Finally we set the attribute capacity = 1 for each arc in D.

For a directed graph having *n* nodes and *m* arcs we derive a directed graph D with 2*n* nodes and *m* + *n* arcs by replacing each original node *v* with two nodes *vA*, *vB* linked by an (internal) arc (*vA*, *vB*) in D. Then for each arc (*u*, *v*) in G we add one arc (*uB*, *vA*) in D. Finally we set the attribute capacity = 1 for each arc in D.

A dictionary with a mapping between nodes in the original graph and the auxiliary digraph is stored as a graph attribute: H.graph['mapping'].

References

4.14 Cores

Find the k-cores of a graph.

The k-core is found by recursively pruning nodes with degrees less than k.

See the following reference for details:

<table>
<thead>
<tr>
<th>core_number(G)</th>
<th>Return the core number for each vertex.</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_core(G[, k, core_number])</td>
<td>Return the k-core of G.</td>
</tr>
<tr>
<td>k_shell(G[, k, core_number])</td>
<td>Return the k-shell of G.</td>
</tr>
<tr>
<td>k_crust(G[, k, core_number])</td>
<td>Return the k-crust of G.</td>
</tr>
<tr>
<td>k_corona(G[, k, core_number])</td>
<td>Return the k-corona of G.</td>
</tr>
</tbody>
</table>

4.14.1 core_number

core_number *(G)*

Return the core number for each vertex.

A k-core is a maximal subgraph that contains nodes of degree k or more.

The core number of a node is the largest value k of a k-core containing that node.

Parameters

- **G** *(NetworkX graph)* – A graph or directed graph

Returns

- **core_number** – A dictionary keyed by node to the core number.

Returns a dictionary mapping each node to its core number.

Parameters

- `G` (NetworkX graph) – A graph or directed graph.
- `k` (int, optional) – The order of the core. If not specified return the main core.
- `core_number` (dictionary, optional) – Precomputed core numbers for the graph G.

Returns

- A dictionary mapping each node to its core number.

Notes

- Not implemented for graphs with parallel edges or self loops.
- For directed graphs the node degree is defined to be the in-degree + out-degree.

References

4.14.2 k_core

```
def k_core(G, k=None, core_number=None):
    return k_core(G, k, core_number)
```

Return the k-core of G.

A k-core is a maximal subgraph that contains nodes of degree k or more.

Parameters

- `G` (NetworkX graph) – A graph or directed graph.
- `k` (int, optional) – The order of the core. If not specified return the main core.
- `core_number` (dictionary, optional) – Precomputed core numbers for the graph G.

Returns

- The k-core subgraph.

Notes

- The main core is the core with the largest degree.
- Not implemented for graphs with parallel edges or self loops.
- For directed graphs the node degree is defined to be the in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also:

- `core_number()`

References

4.14.3 k_shell

```
def k_shell(G, k=None, core_number=None):
    return k_shell(G, k, core_number)
```

Return the k-shell of G.

The k-shell is the subgraph of nodes in the k-core but not in the (k+1)-core.

Parameters

- `G` (NetworkX graph) – A graph or directed graph.
• k (int, optional) – The order of the shell. If not specified return the main shell.

• core_number (dictionary, optional) – Precomputed core numbers for the graph G.

Returns G – The k-shell subgraph

Return type NetworkX graph

Raises NetworkXError – The k-shell is not defined for graphs with self loops or parallel edges.

Notes

This is similar to k_corona but in that case only neighbors in the k-core are considered.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also:
core_number(), k_corona()

References

4.14.4 k_crust

k_crust (G, k=None, core_number=None)

Return the k-crust of G.

The k-crust is the graph G with the k-core removed.

Parameters

• G (NetworkX graph) – A graph or directed graph.

• k (int, optional) – The order of the shell. If not specified return the main crust.

• core_number (dictionary, optional) – Precomputed core numbers for the graph G.

Returns G – The k-crust subgraph

Return type NetworkX graph

Raises NetworkXError – The k-crust is not defined for graphs with self loops or parallel edges.

Notes

This definition of k-crust is different than the definition in 79. The k-crust in 1 is equivalent to the k+1 crust of this algorithm.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also:

79 A model of Internet topology using k-shell decomposition Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154 http://www.pnas.org/content/104/27/11150.full
4.14.5 k_corona

k_corona \((G, k, core_number=None)\)

Return the k-corona of G.

The k-corona is the subgraph of nodes in the k-core which have exactly k neighbours in the k-core.

Parameters

- **G** (*NetworkX graph*) – A graph or directed graph
- **k** (*int*) – The order of the corona.
- **core_number** (*dictionary, optional*) – Precomputed core numbers for the graph G.

Returns **G** – The k-corona subgraph

Return type **NetworkX graph**

Raises **NetworkXError** – The k-corona is not defined for graphs with self loops or parallel edges.

Notes

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also:

- core_number()

References

4.15 Cycles

4.15.1 Cycle finding algorithms

- **cycle_basis**(G[, root])\n Returns a list of cycles which form a basis for cycles of G.

- **simple_cycles**(G)\n Find simple cycles (elementary circuits) of a directed graph.

- **find_cycle**(G[, source, orientation])\n Returns the edges of a cycle found via a directed, depth-first traversal.

4.15.2 cycle_basis

- **cycle_basis**(G, root=None)\n Returns a list of cycles which form a basis for cycles of G.

 A basis for cycles of a network is a minimal collection of cycles such that any cycle in the network can be written as a sum of cycles in the basis. Here summation of cycles is defined as “exclusive or” of the edges. Cycle bases are useful, e.g. when deriving equations for electric circuits using Kirchhoff’s Laws.
Parameters

- \(G \) (NetworkX Graph) –
- root (node, optional) – Specify starting node for basis.

Returns

- A list of cycle lists. Each cycle list is a list of nodes
 which forms a cycle (loop) in \(G \).

Examples

```python
>>> G=nx.Graph()
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([0,3,4,5])
>>> print(nx.cycle_basis(G,0))
[[3, 4, 5, 0], [1, 2, 3, 0]]
```

Notes

This is adapted from algorithm CACM 491 \(^{80}\).

References

See also:

- `simple_cycles()`

4.15.3 simple_cycles

`simple_cycles(G)`

Find simple cycles (elementary circuits) of a directed graph.

An simple cycle, or elementary circuit, is a closed path where no node appears twice, except that the first and last node are the same. Two elementary circuits are distinct if they are not cyclic permutations of each other.

This is a nonrecursive, iterator/generator version of Johnson’s algorithm \(^{81}\). There may be better algorithms for some cases \(^{82}^{83}\).

Parameters \(G \) (NetworkX DiGraph) – A directed graph

Returns cycle_generator – A generator that produces elementary cycles of the graph. Each cycle is a list of nodes with the first and last nodes being the same.

Return type generator

\(^{81}\) Finding all the elementary circuits of a directed graph. D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975. http://dx.doi.org/10.1137/0204007

Examples

```python
>>> G = nx.DiGraph([(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)])
>>> len(list(nx.simple_cycles(G)))
5
```

To filter the cycles so that they don’t include certain nodes or edges, copy your graph and eliminate those nodes or edges before calling

```python
>>> copyG = G.copy()
>>> copyG.remove_nodes_from([1])
>>> copyG.remove_edges_from([(0, 1)])
>>> len(list(nx.simple_cycles(copyG)))
3
```

Notes

The implementation follows pp. 79-80 in \(^1\).

The time complexity is \(O((n + e)(c + 1))\) for \(n\) nodes, \(e\) edges and \(c\) elementary circuits.

References

See also:

cycle_basis()

4.15.4 find_cycle

find_cycle \((G, source=None, orientation='original')\)

Returns the edges of a cycle found via a directed, depth-first traversal.

Parameters

- \(G\) (graph) – A directed/undirected graph/multigraph.
- source (node, list of nodes) – The node from which the traversal begins. If None, then a source is chosen arbitrarily and repeatedly until all edges from each node in the graph are searched.
- orientation (‘original’ | ‘reverse’ | ‘ignore’) – For directed graphs and directed multigraphs, edge traversals need not respect the original orientation of the edges. When set to ‘reverse’, then every edge will be traversed in the reverse direction. When set to ‘ignore’, then each directed edge is treated as a single undirected edge that can be traversed in either direction. For undirected graphs and undirected multigraphs, this parameter is meaningless and is not consulted by the algorithm.

Returns edges – A list of directed edges indicating the path taken for the loop. If no cycle is found, then edges will be an empty list. For graphs, an edge is of the form \((u, v)\) where \(u\) and \(v\) are the tail and head of the edge as determined by the traversal. For multigraphs, an edge is of the form \((u, v, key)\), where key is the key of the edge. When the graph is directed, then \(u\) and \(v\) are always in the order of the actual directed edge. If orientation is ‘ignore’, then an edge takes the form \((u, v, key, direction)\) where direction indicates if the edge was followed in the forward (tail to head) or reverse (head to tail) direction. When the direction is forward, the value of direction is ‘forward’. When the direction is reverse, the value of direction is ‘reverse’.
Return type directed edges

Examples

In this example, we construct a DAG and find, in the first call, that there are no directed cycles, and so an exception is raised. In the second call, we ignore edge orientations and find that there is an undirected cycle. Note that the second call finds a directed cycle while effectively traversing an undirected graph, and so, we found an “undirected cycle”. This means that this DAG structure does not form a directed tree (which is also known as a polytree).

```python
>>> import networkx as nx

>>> G = nx.DiGraph([(0,1), (0,2), (1,2)])

>>> try:
...     find_cycle(G, orientation='original')
... except:
...     pass

>>> list(find_cycle(G, orientation='ignore'))
[(0, 1, 'forward'), (1, 2, 'forward'), (0, 2, 'reverse')]
```

4.16 Directed Acyclic Graphs

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ancestors(G, source)</td>
<td>Return all nodes having a path to source in G.</td>
</tr>
<tr>
<td>descendants(G, source)</td>
<td>Return all nodes reachable from source in G.</td>
</tr>
<tr>
<td>topological_sort(G, nbunch, reverse)</td>
<td>Return a list of nodes in topological sort order.</td>
</tr>
<tr>
<td>topological_sort_recursive(G, nbunch, reverse)</td>
<td>Return a list of nodes in topological sort order.</td>
</tr>
<tr>
<td>is_directed_acyclic_graph(G)</td>
<td>Return True if the graph G is a directed acyclic graph (DAG) or False.</td>
</tr>
<tr>
<td>is_aperiodic(G)</td>
<td>Return True if G is aperiodic.</td>
</tr>
<tr>
<td>transitive_closure(G)</td>
<td>Returns transitive closure of a directed graph</td>
</tr>
<tr>
<td>antichains(G)</td>
<td>Generates antichains from a DAG.</td>
</tr>
<tr>
<td>dag_longest_path(G)</td>
<td>Returns the longest path in a DAG</td>
</tr>
<tr>
<td>dag_longest_path_length(G)</td>
<td>Returns the longest path length in a DAG</td>
</tr>
</tbody>
</table>

4.16.1 ancestors

ancestors (G, source)

Return all nodes having a path to source in G.

Parameters

- **G** (*NetworkX DiGraph*) –
- **source** (*node in G*) –

Returns ancestors – The ancestors of source in G

Return type set()

4.16.2 descendants

descendants (G, source)

Return all nodes reachable from source in G.
Parameters

- \(G \) (NetworkX DiGraph) –
- source (node in \(G \)) –

Returns des – The descendants of source in \(G \)

Return type set()

4.16.3 topological_sort

topological_sort \((G, \text{nbunch}=\text{None, reverse}=\text{False})\)

Return a list of nodes in topological sort order.

A topological sort is a nonunique permutation of the nodes such that an edge from \(u \) to \(v \) implies that \(u \) appears before \(v \) in the topological sort order.

Parameters

- \(G \) (NetworkX digraph) – A directed graph
- nbunch (container of nodes (optional)) – Explore graph in specified order given in nbunch
- reverse (bool, optional) – Return postorder instead of preorder if True. Reverse mode is a bit more efficient.

Raises

- NetworkXError – Topological sort is defined for directed graphs only. If the graph \(G \) is undirected, a NetworkXError is raised.
- NetworkXUnfeasible – If \(G \) is not a directed acyclic graph (DAG) no topological sort exists and a NetworkXUnfeasible exception is raised.

Notes

This algorithm is based on a description and proof in The Algorithm Design Manual 84.

See also:

is_directed_acyclic_graph()

References

4.16.4 topological_sort_recursive

topological_sort_recursive \((G, \text{nbunch}=\text{None, reverse}=\text{False})\)

Return a list of nodes in topological sort order.

A topological sort is a nonunique permutation of the nodes such that an edge from \(u \) to \(v \) implies that \(u \) appears before \(v \) in the topological sort order.

Parameters

- \(G \) (NetworkX digraph) –
- nbunch (container of nodes (optional)) – Explore graph in specified order given in nbunch

• **reverse** *(bool, optional)* – Return postorder instead of preorder if True. Reverse mode is a bit more efficient.

Raises

- **NetworkXError** – Topological sort is defined for directed graphs only. If the graph G is undirected, a NetworkXError is raised.
- **NetworkXUnfeasible** – If G is not a directed acyclic graph (DAG) no topological sort exists and a NetworkXUnfeasible exception is raised.

Notes

This is a recursive version of topological sort.

See also:

`topological_sort()`, `is_directed_acyclic_graph()`

4.16.5 is_directed_acyclic_graph

is_directed_acyclic_graph *(G)*

Return True if the graph G is a directed acyclic graph (DAG) or False if not.

Parameters

- **G** *(NetworkX graph)* – A graph

Returns

- **is_dag** – True if G is a DAG, false otherwise

Return type

`bool`

4.16.6 is_aperiodic

is_aperiodic *(G)*

Return True if G is aperiodic.

A directed graph is aperiodic if there is no integer k > 1 that divides the length of every cycle in the graph.

Parameters

- **G** *(NetworkX DiGraph)* – Graph

Returns

- **aperiodic** – True if the graph is aperiodic False otherwise

Return type

`boolean`

Raises

- **NetworkXError** – If G is not directed

Notes

This uses the method outlined in 85, which runs in O(m) time given m edges in G. Note that a graph is not aperiodic if it is acyclic as every integer trivial divides length 0 cycles.

4.16.7 transitive_closure

transitive_closure \((G) \)

Returns transitive closure of a directed graph

The transitive closure of \(G = (V,E) \) is a graph \(G+ = (V,E+) \) such that for all \(v,w \) in \(V \) there is an edge \((v,w) \) in \(E+ \) if and only if there is a non-null path from \(v \) to \(w \) in \(G \).

Parameters

- \(G \) \((\text{NetworkX DiGraph}) \) – Graph

Returns

- \(TC \) – Graph

Return type

- NetworkX DiGraph

Raises

- NetworkXNotImplemented – If \(G \) is not directed

4.16.8 antichains

antichains \((G) \)

Generates antichains from a DAG.

An antichain is a subset of a partially ordered set such that any two elements in the subset are incomparable.

Parameters

- \(G \) \((\text{NetworkX DiGraph}) \) – Graph

Returns

- antichain

Return type

- generator object

Raises

- NetworkXNotImplemented – If \(G \) is not directed
- NetworkXUnfeasible – If \(G \) contains a cycle

Notes

This function was originally developed by Peter Jipsen and Franco Saliola for the SAGE project. It’s included in NetworkX with permission from the authors. Original SAGE code at:

https://sage.informatik.uni-goettingen.de/src/combinat/posets/hasse_diagram.py

4.16.9 dag_longest_path

dag_longest_path \((G) \)

Returns the longest path in a DAG

Parameters

- \(G \) \((\text{NetworkX DiGraph}) \) – Graph

Returns

- \(\text{path} \) – Longest path

Return type

- list
4.16.10 `dag_longest_path_length`

`dag_longest_path_length(G)`
Returns the longest path length in a DAG

Parameters

- `G` (*NetworkX DiGraph*) – Graph

Returns`path_length` – Longest path length

Return type`int`

Raises `NetworkXNotImplemented` – If `G` is not directed

See also:

`dag_longest_path()`

4.17 Distance Measures

Graph diameter, radius, eccentricity and other properties.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>center(G[, e])</code></td>
<td>Return the center of the graph <code>G</code>.</td>
</tr>
<tr>
<td><code>diameter(G[, e])</code></td>
<td>Return the diameter of the graph <code>G</code>.</td>
</tr>
<tr>
<td><code>eccentricity(G[, v, sp])</code></td>
<td>Return the eccentricity of nodes in <code>G</code>.</td>
</tr>
<tr>
<td><code>periphery(G[, e])</code></td>
<td>Return the periphery of the graph <code>G</code>.</td>
</tr>
<tr>
<td><code>radius(G[, e])</code></td>
<td>Return the radius of the graph <code>G</code>.</td>
</tr>
</tbody>
</table>

4.17.1 center

`center(G[, e=None])`
Return the center of the graph `G`.

The center is the set of nodes with eccentricity equal to radius.

Parameters

- `G` (*NetworkX graph*) – A graph
- `e` (*eccentricity dictionary, optional*) – A precomputed dictionary of eccentricities.

Returns`c` – List of nodes in center

Return type`list`

4.17.2 diameter

`diameter(G[, e=None])`
Return the diameter of the graph `G`.

The diameter is the maximum eccentricity.
Parameters

- **G** *(NetworkX graph)* – A graph
- **e** *(eccentricity dictionary, optional)* – A precomputed dictionary of eccentricities.

Returns **d** – Diameter of graph

Return type **integer**

See also:

- `eccentricity()`

4.17.3 eccentricity

`eccentricity(G, v=None, sp=None)`

Return the eccentricity of nodes in G.

The eccentricity of a node v is the maximum distance from v to all other nodes in G.

Parameters

- **G** *(NetworkX graph)* – A graph
- **v** *(node, optional)* – Return value of specified node
- **sp** *(dict of dicts, optional)* – All pairs shortest path lengths as a dictionary of dictionaries

Returns **ecc** – A dictionary of eccentricity values keyed by node.

Return type **dictionary**

4.17.4 periphery

`periphery(G, e=None)`

Return the periphery of the graph G.

The periphery is the set of nodes with eccentricity equal to the diameter.

Parameters

- **G** *(NetworkX graph)* – A graph
- **e** *(eccentricity dictionary, optional)* – A precomputed dictionary of eccentricities.

Returns **p** – List of nodes in periphery

Return type **list**

4.17.5 radius

`radius(G, e=None)`

Return the radius of the graph G.

The radius is the minimum eccentricity.

Parameters

- **G** *(NetworkX graph)* – A graph
- **e** *(eccentricity dictionary, optional)* – A precomputed dictionary of eccentricities.
Returns \(r \) – Radius of graph

Return type integer

4.18 Distance-Regular Graphs

4.18.1 Distance-regular graphs

\[\text{is_distance_regular}(G) \]
Returns True if the graph is distance regular, False otherwise.

\[\text{intersection_array}(G) \]
Returns the intersection array of a distance-regular graph.

\[\text{global_parameters}(b, c) \]
Return global parameters for a given intersection array.

4.18.2 is_distance_regular

\text{is_distance_regular}(G)
Returns True if the graph is distance regular, False otherwise.

A connected graph \(G \) is distance-regular if for any nodes \(x, y \) and any integers \(i, j = 0, 1, \ldots, d \) (where \(d \) is the graph diameter), the number of vertices at distance \(i \) from \(x \) and distance \(j \) from \(y \) depends only on \(i, j \) and the graph distance between \(x \) and \(y \), independently of the choice of \(x \) and \(y \).

Parameters \(G \) (Networkx graph (undirected)) –

Returns True if the graph is Distance Regular, False otherwise

Return type bool

Examples

```python
>>> G=nx.hypercube_graph(6)
>>> nx.is_distance_regular(G)
True
```

See also:

\text{intersection_array()}, \text{global_parameters()}

Notes

For undirected and simple graphs only

References

4.18.3 intersection_array

\text{intersection_array}(G)
Returns the intersection array of a distance-regular graph.

Given a distance-regular graph \(G \) with integers \(b_i, c_{i,i} = 0, \ldots, d \) such that for any 2 vertices \(x, y \) in \(G \) at a distance \(i=d(x,y) \), there are exactly \(c_{i} \) neighbors of \(y \) at a distance of \(i-1 \) from \(x \) and \(b_i \) neighbors of \(y \) at a distance of \(i+1 \) from \(x \).
A distance regular graph’s intersection array is given by, \([b_0,b_1,\ldots,b_{d-1};c_1,c_2,\ldots,c_d]\)

Parameters \(G\) *(Networkx graph (undirected)) –*

Returns \(b,c\)

Return type tuple of lists

Examples

```python
g=nx.icosahedral_graph()
nx.intersection_array(G)
```

```plaintext
([5, 2, 1], [1, 2, 5])
```

References

See also:

global_parameters()

4.18.4 global_parameters

global_parameters \((b,c)\)

Return global parameters for a given intersection array.

Given a distance-regular graph \(G\) with integers \(b_i, c_i, i = 0, \ldots, d\) such that for any 2 vertices \(x,y\) in \(G\) at a distance \(i=d(x,y)\), there are exactly \(c_i\) neighbors of \(y\) at a distance of \(i-1\) from \(x\) and \(b_i\) neighbors of \(y\) at a distance of \(i+1\) from \(x\).

Thus, a distance regular graph has the global parameters, \([[c_0,a_0,b_0],[c_1,a_1,b_1],\ldots,[c_d,a_d,b_d]]\) for the intersection array \([b_0,b_1,\ldots,b_{d-1};c_1,c_2,\ldots,c_d]\) where \(a_i+b_i+c_i=k\), \(k=\) degree of every vertex.

Parameters \(b, c\) *(tuple of lists) –*

Returns \(p\)

Return type list of three-tuples

Examples

```python
g=nx.dodecahedral_graph()
b,c=nx.intersection_array(G)
list(nx.global_parameters(b,c))
```

```plaintext
[(0, 0, 3), (1, 0, 2), (1, 1, 1), (1, 1, 1), (2, 0, 1), (3, 0, 0)]
```

References

See also:

intersection_array()
4.19 Dominance

Dominance algorithms.

<table>
<thead>
<tr>
<th>immediate_dominators(G, start)</th>
<th>Returns the immediate dominators of all nodes of a directed graph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dominance_frontiers(G, start)</td>
<td>Returns the dominance frontiers of all nodes of a directed graph.</td>
</tr>
</tbody>
</table>

4.19.1 immediate_dominators

immediate_dominators *(G, start)*

Returns the immediate dominators of all nodes of a directed graph.

Parameters

- `G` *(a DiGraph or MultiDiGraph)* – The graph where dominance is to be computed.
- `start` *(node)* – The start node of dominance computation.

Returns

- `idom` – A dict containing the immediate dominators of each node reachable from `start`.

Return type

dict keyed by nodes

Raises

- `NetworkXNotImplemented` – If `G` is undirected.
- `NetworkXError` – If `start` is not in `G`.

Notes

Except for `start`, the immediate dominators are the parents of their corresponding nodes in the dominator tree.

Examples

```python
>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
>>> sorted(nx.immediate_dominators(G, 1).items())
[(1, 1), (2, 1), (3, 1), (4, 3), (5, 1)]
```

References

4.19.2 dominance_frontiers

dominance_frontiers *(G, start)*

Returns the dominance frontiers of all nodes of a directed graph.

Parameters

- `G` *(a DiGraph or MultiDiGraph)* – The graph where dominance is to be computed.
- `start` *(node)* – The start node of dominance computation.

Returns

- `df` – A dict containing the dominance frontiers of each node reachable from `start` as lists.

Return type

dict keyed by nodes

Raises

• NetworkXNotImplemented – If \(G \) is undirected.
• NetworkXError – If \(\text{start} \) is not in \(G \).

Examples

```python
>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
>>> sorted((u, sorted(df)) for u, df in nx.dominance_frontiers(G, 1).items())
[(1, []), (2, [5]), (3, [5]), (4, [5]), (5, [])]
```

References

4.20 Dominating Sets

```
dominating_set(G, start_with=None)  Finds a dominating set for the graph G.
is_dominating_set(G, nbunch)  Checks if nodes in nbunch are a dominating set for G.
```

4.20.1 dominating_set

\textit{dominating_set} (G, start_with=None)

Finds a dominating set for the graph \(G \).

A dominating set for a graph \(G = (V, E) \) is a node subset \(D \) of \(V \) such that every node not in \(D \) is adjacent to at least one member of \(D \).\footnote{\url{http://en.wikipedia.org/wiki/Dominating_set}}

\textbf{Parameters}

• \(G \) (NetworkX graph –

• \textbf{start_with} (Node (default=None)) – Node to use as a starting point for the algorithm.

\textbf{Returns} \(D \) – A dominating set for \(G \).

\textbf{Return type} set

\textbf{Notes}

This function is an implementation of algorithm 7 in \footnote{Abdol-Hossein Esfahanian. Connectivity Algorithms. \url{http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf}} which finds some dominating set, not necessarily the smallest one.

\textbf{See also:}

\textit{is_dominating_set}()

\textbf{References}

4.20.2 is_dominating_set

\textit{is_dominating_set} (G, nbunch)

Checks if nodes in nbunch are a dominating set for \(G \).
A dominating set for a graph $G = (V, E)$ is a node subset D of V such that every node not in D is adjacent to at least one member of D.

Parameters

- G (*NetworkX graph*)
- $nbunch$ (*Node container*)

See also

`dominating_set()`

References

4.21 Eulerian

Eulerian circuits and graphs.

```python
is_eulerian(G)  # Return True if G is an Eulerian graph, False otherwise.
eulerian_circuit(G[, source])  # Return the edges of an Eulerian circuit in G.
```

4.21.1 is_eulerian

is_eulerian (G)

Return True if G is an Eulerian graph, False otherwise.

An Eulerian graph is a graph with an Eulerian circuit.

Parameters

- G (*graph*) – A NetworkX Graph

Examples

```python
>>> nx.is_eulerian(nx.DiGraph({0:[3], 1:[2], 2:[3], 3:[0, 1]}))
True
>>> nx.is_eulerian(nx.complete_graph(5))
True
>>> nx.is_eulerian(nx.petersen_graph())
False
```

Notes

This implementation requires the graph to be connected (or strongly connected for directed graphs).

4.21.2 eulerian_circuit

eulerian_circuit (G, source=None)

Return the edges of an Eulerian circuit in G.

An Eulerian circuit is a path that crosses every edge in G exactly once and finishes at the starting node.

Parameters

- G (NetworkX Graph or DiGraph) – A directed or undirected graph
- source (node, optional) – Starting node for circuit.

Returns edges – A generator that produces edges in the Eulerian circuit.

Return type generator

Raises NetworkXError – If the graph is not Eulerian.

See also: is_eulerian()

Notes

Linear time algorithm, adapted from89. General information about Euler tours90.

References

Examples

```python
>>> G=nx.complete_graph(3)
>>> list(nx.eulerian_circuit(G))
[(0, 2), (2, 1), (1, 0)]
>>> list(nx.eulerian_circuit(G,source=1))
[(1, 2), (2, 0), (0, 1)]
>>> [u for u,v in nx.eulerian_circuit(G)]   # nodes in circuit
[0, 2, 1]
```

4.22 Flows

4.22.1 Maximum Flow

maximum_flow($G, s, t[, capacity, flow_func]$)	Find a maximum single-commodity flow.
maximum_flow_value($G, s, t[, capacity, ...]$)	Find the value of maximum single-commodity flow.
minimum_cut($G, s, t[, capacity, flow_func]$)	Compute the value and the node partition of a minimum (s, t)-cut.
minimum_cut_value($G, s, t[, capacity, flow_func]$)	Compute the value of a minimum (s, t)-cut.

maximum_flow

maximum_flow($G, s, t, capacity='capacity'$, flow_func=None, **kwargs)

Find a maximum single-commodity flow.

Parameters

- G (NetworkX graph) – Edges of the graph are expected to have an attribute called ‘capacity’. If this attribute is not present, the edge is considered to have infinite capacity.

90 http://en.wikipedia.org/wiki/Eulerian_path
- **s** *(node)* – Source node for the flow.
- **t** *(node)* – Sink node for the flow.
- **capacity** *(string)* – Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: ‘capacity’.
- **flow_func** *(function)* – A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function *(preflow_push())* is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None.
- **kwargs** *(Any other keyword parameter is passed to the function that)* – computes the maximum flow.

Returns

- **flow_value** *(integer, float)* – Value of the maximum flow, i.e., net outflow from the source.
- **flow_dict** *(dict)* – A dictionary containing the value of the flow that went through each edge.

Raises

- **NetworkXError** – The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised.
- **NetworkXUnbounded** – If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

`maximum_flow_value()`, `minimum_cut()`, `minimum_cut_value()`, `edmonds_karp()`, `preflow_push()`, `shortest_augmenting_path()`

Notes

The function used in the flow_func parameter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges *(u, v)* and *(v, u)* iff *(u, v)* is not a self-loop, and at least one of *(u, v)* and *(v, u)* exists in G.

For each edge *(u, v)* in R, R[u][v][‘capacity’] is equal to the capacity of *(u, v)* in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v][‘capacity’] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph[‘inf’]. For each edge *(u, v)* in R, R[u][v][‘flow’] represents the flow function of *(u, v)* and satisfies R[u][v][‘flow’] == -R[v][u][‘flow’].

The flow value, defined as the total flow into t, the sink, is stored in R.graph[‘flow_value’]. Reachability to t using only edges *(u, v)* such that R[u][v][‘flow’] < R[u][v][‘capacity’] induces a minimum s-t cut.

Specific algorithms may store extra data in R.

The function should support an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined.
Examples

```python
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
```

maximum_flow returns both the value of the maximum flow and a dictionary with all flows.

```python
>>> flow_value, flow_dict = nx.maximum_flow(G, 'x', 'y')
>>> flow_value
3.0
```

```python
>>> print(flow_dict['x']['b'])
1.0
```

You can also use alternative algorithms for computing the maximum flow by using the `flow_func` parameter.

```python
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> flow_value == nx.maximum_flow(G, 'x', 'y', flow_func=shortest_augmenting_path)[0]
True
```

maximum_flow_value

Find the value of maximum single-commodity flow.

Parameters

- `G` (*NetworkX graph*) – Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.
- `s` (*node*) – Source node for the flow.
- `t` (*node*) – Sink node for the flow.
- `capacity` (*string*) – Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.
- `flow_func` (*function*) – A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function (preflow_push()) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None.
- `**kwargs` (*Any other keyword parameter is passed to the function that*) – computes the maximum flow.

Returns

- `flow_value` – Value of the maximum flow, i.e., net outflow from the source.

Return type

integer, float
Raises

- **NetworkXError** – The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised.

- **NetworkXUnbounded** – If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

- `maximum_flow()`, `minimum_cut()`, `minimum_cut_value()`, `edmonds_karp()`, `preflow_push()`, `shortest_augmenting_path()`

Notes

The function used in the `flow_func` parameter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G.

For each edge (u, v) in R, $R[u][v]['capacity']$ is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, $R[u][v]['capacity']$ will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, $R[u][v]['flow']$ represents the flow function of (u, v) and satisfies $R[u][v]['flow'] = -R[v][u]['flow'].$

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that $R[u][v]['flow'] < R[u][v]['capacity']$ induces a minimum s-t cut.

Specific algorithms may store extra data in R.

The function should support an optional boolean parameter `value_only`. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined.

Examples

```python
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
```

Maximum flow value computes only the value of the maximum flow:

```python
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value
3.0
```

You can also use alternative algorithms for computing the maximum flow by using the `flow_func` parameter.
minimum_cut

`minimum_cut(G, s, t, capacity='capacity', flow_func=None, **kwargs)`

Compute the value and the node partition of a minimum (s, t)-cut.

Use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a maximum flow.

Parameters

- **G** (*NetworkX* graph) – Edges of the graph are expected to have an attribute called ‘capacity’. If this attribute is not present, the edge is considered to have infinite capacity.
- **s** (*node*) – Source node for the flow.
- **t** (*node*) – Sink node for the flow.
- **capacity** (*string*) – Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: ‘capacity’.
- **flow_func** (*function*) – A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or DiGraph, a source node, and a target node. And return a residual network that follows *NetworkX* conventions (see Notes). If flow_func is None, the default maximum flow function (`preflow_push()`) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None.
- **kwargs** (*Any other keyword parameter is passed to the function that computes the maximum flow.*)

Returns

- **cut_value** (*integer, float*) – Value of the minimum cut.
- **partition** (*pair of node sets*) – A partitioning of the nodes that defines a minimum cut.

Raises

`NetworkXUnbounded` – If the graph has a path of infinite capacity, all cuts have infinite capacity and the function raises a `NetworkXError`.

See also:

`maximum_flow()`, `maximum_flow_value()`, `minimum_cut_value()`, `edmonds_karp()`, `preflow_push()`, `shortest_augmenting_path()`

Notes

The function used in the flow_func parameter has to return a residual network that follows *NetworkX* conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G.

4.22. Flows 261
For each edge \((u, v)\) in \(R\), \(R[u][v][\text{`capacity'}]\) is equal to the capacity of \((u, v)\) in \(G\) if it exists in \(G\) or zero otherwise. If the capacity is infinite, \(R[u][v][\text{`capacity'}]\) will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in \(R\.graph[\text{`inf'}]\). For each edge \((u, v)\) in \(R\), \(R[u][v][\text{`flow'}]\) represents the flow function of \((u, v)\) and satisfies \(R[u][v][\text{`flow'}] = -R[v][u][\text{`flow'}]\).

The flow value, defined as the total flow into \(t\), the sink, is stored in \(R\.graph[\text{`flow_value'}]\). Reachability to \(t\) using only edges \((u, v)\) such that \(R[u][v][\text{`flow'}] < R[u][v][\text{`capacity'}]\) induces a minimum \(s\)-\(t\) cut.

Specific algorithms may store extra data in \(R\).

The function should supports an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined.

Examples

```python
g = nx.DiGraph()
g.add_edge('x','a', capacity = 3.0)
g.add_edge('x','b', capacity = 1.0)
g.add_edge('a','c', capacity = 3.0)
g.add_edge('b','c', capacity = 5.0)
g.add_edge('b','d', capacity = 4.0)
g.add_edge('d','e', capacity = 2.0)
g.add_edge('c','y', capacity = 2.0)
g.add_edge('e','y', capacity = 3.0)
```

minimum_cut computes both the value of the minimum cut and the node partition:

```python
cut_value, partition = nx.minimum_cut(g, 'x', 'y')
reachable, non_reachable = partition
```

'partition' here is a tuple with the two sets of nodes that define the minimum cut. You can compute the cut set of edges that induce the minimum cut as follows:

```python
cutset = set()
for u, nbrs in ((n, G[n]) for n in reachable):
    cutset.update((u, v) for v in nbrs if v in non_reachable)
print(sorted(cutset))
print(sorted(cutset)
[(\'c\', \'y\'), (\'x\', \'b\')]`

```python
cut_value == sum(G.edge[u][v][\text{`capacity'}] for (u, v) in cutset)
```

You can also use alternative algorithms for computing the minimum cut by using the flow_func parameter.

```python
flow_func = shortest_augmenting_path
```

```python
cut_value == nx.minimum_cut(G, 'x', 'y',
 flow_func=shortest_augmenting_path)[0]
```

**minimum_cut_value**

minimum_cut_value \((G, s, t, capacity=`capacity`, flow_func=None, **kwargs)\)

Compute the value of a minimum \((s, t)\)-cut.

Use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a maximum flow.
Parameters

- **G (NetworkX graph)** – Edges of the graph are expected to have an attribute called ‘capacity’. If this attribute is not present, the edge is considered to have infinite capacity.
- **s (node)** – Source node for the flow.
- **t (node)** – Sink node for the flow.
- **capacity (string)** – Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: ‘capacity’.
- **flow_func (function)** – A function for computing the maximum flow among a pair of nodes in a capacitated graph. The function has to accept at least three parameters: a Graph or Digraph, a source node, and a target node. And return a residual network that follows NetworkX conventions (see Notes). If flow_func is None, the default maximum flow function (preflow_push()) is used. See below for alternative algorithms. The choice of the default function may change from version to version and should not be relied on. Default value: None.
- **kwargs (Any other keyword parameter is passed to the function that)** – computes the maximum flow.

Returns **cut_value** – Value of the minimum cut.

Return type **integer, float**

Raises **NetworkXUnbounded** – If the graph has a path of infinite capacity, all cuts have infinite capacity and the function raises a NetworkXError.

See also:
- maximum_flow(), maximum_flow_value(), minimum_cut(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

Notes

The function used in the flow_func parameter has to return a residual network that follows NetworkX conventions:

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G.

For each edge (u, v) in R, R[u][v]['capacity'] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v]['capacity'] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph['inf']. For each edge (u, v) in R, R[u][v]['flow'] represents the flow function of (u, v) and satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is stored in R.graph['flow_value']. Reachability to t using only edges (u, v) such that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum s-t cut.

Specific algorithms may store extra data in R.

The function should support an optional boolean parameter value_only. When True, it can optionally terminate the algorithm as soon as the maximum flow value and the minimum cut can be determined.
Examples

```python
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity = 3.0)
>>> G.add_edge('x','b', capacity = 1.0)
>>> G.add_edge('a','c', capacity = 3.0)
>>> G.add_edge('b','c', capacity = 5.0)
>>> G.add_edge('b','d', capacity = 4.0)
>>> G.add_edge('d','e', capacity = 2.0)
>>> G.add_edge('c','y', capacity = 2.0)
>>> G.add_edge('e','y', capacity = 3.0)
minimum_cut_value computes only the value of the minimum cut:

```python
>>> cut_value = nx.minimum_cut_value(G, 'x', 'y')
>>> cut_value
3.0
```  
You can also use alternative algorithms for computing the minimum cut by using the flow_func parameter.

```python
>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> cut_value == nx.minimum_cut_value(G, 'x', 'y',
...   flow_func=shortest_augmenting_path)
True
```

4.22.2 Edmonds-Karp

edmonds_karp

edmonds_karp *(G, s, t[, capacity, residual, ...])* Find a maximum single-commodity flow using the Edmonds-Karp algorithm.

edmonds_karp *(G, s, t[, capacity='capacity', residual=None, value_only=False, cutoff=None]*) Find a maximum single-commodity flow using the Edmonds-Karp algorithm.

This function returns the residual network resulting after computing the maximum flow. See below for details about the conventions NetworkX uses for defining residual networks.

This algorithm has a running time of $O(nm^2)$ for n nodes and m edges.

Parameters

- **G** (*NetworkX graph*) – Edges of the graph are expected to have an attribute called ‘capacity’. If this attribute is not present, the edge is considered to have infinite capacity.
- **s** (*node*) – Source node for the flow.
- **t** (*node*) – Sink node for the flow.
- **capacity** (*string*) – Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: ‘capacity’.
- **residual** (*NetworkX graph*) – Residual network on which the algorithm is to be executed. If None, a new residual network is created. Default value: None.
- **value_only** (*bool*) – If True compute only the value of the maximum flow. This parameter will be ignored by this algorithm because it is not applicable.
• **cutoff** (integer, float) – If specified, the algorithm will terminate when the flow value reaches or exceeds the cutoff. In this case, it may be unable to immediately determine a minimum cut. Default value: None.

Returns R – Residual network after computing the maximum flow.

Return type NetworkX DiGraph

Raises

- **NetworkXError** – The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised.

- **NetworkXUnbounded** – If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

 `maximum_flow(), minimum_cut(), preflow_push(), shortest_augmenting_path()`

Notes

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G.

For each edge (u, v) in R, R[u][v][‘capacity’] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v][‘capacity’] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph[‘inf’]. For each edge (u, v) in R, R[u][v][‘flow’] represents the flow function of (u, v) and satisfies R[u][v][‘flow’] == -R[v][u][‘flow’].

The flow value, defined as the total flow into t, the sink, is stored in R.graph[‘flow_value’]. If cutoff is not specified, reachability to t using only edges (u, v) such that R[u][v][‘flow’] < R[u][v][‘capacity’] induces a minimum s-t cut.

Examples

```python
>>> import networkx as nx
>>> from networkx.algorithms.flow import edmonds_karp
```

The functions that implement flow algorithms and output a residual network, such as this one, are not imported to the base NetworkX namespace, so you have to explicitly import them from the flow package.

```python
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = edmonds_karp(G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value
3.0
```

4.22. Flows 265
>>> flow_value == R.graph['flow_value']
True

4.22.3 Shortest Augmenting Path

shortest_augmenting_path

shortest_augmenting_path *(G, s, t[, ...])* Find a maximum single-commodity flow using the shortest augmenting path algorithm.

Parameters

- **G** *(NetworkX graph)* — Edges of the graph are expected to have an attribute called ‘capacity’. If this attribute is not present, the edge is considered to have infinite capacity.
- **s** *(node)* — Source node for the flow.
- **t** *(node)* — Sink node for the flow.
- **capacity** *(string)* — Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: ‘capacity’.
- **residual** *(NetworkX graph)* — Residual network on which the algorithm is to be executed. If None, a new residual network is created. Default value: None.
- **value_only** *(bool)* — If True compute only the value of the maximum flow. This parameter will be ignored by this algorithm because it is not applicable.
- **two_phase** *(bool)* — If True, a two-phase variant is used. The two-phase variant improves the running time on unit-capacity networks from \(O(nm)\) to \(O(\min(n^{2/3}, m^{1/2})m)\). Default value: False.
- **cutoff** *(integer, float)* — If specified, the algorithm will terminate when the flow value reaches or exceeds the cutoff. In this case, it may be unable to immediately determine a minimum cut. Default value: None.

Returns **R** — Residual network after computing the maximum flow.

Return type NetworkX DiGraph

Raises

- **NetworkXError** — The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised.
- **NetworkXUnbounded** — If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

maximum_flow(), minimum_cut(), edmonds_karp(), preflow_push()
Notes

The residual network \(R \) from an input graph \(G \) has the same nodes as \(G \). \(R \) is a DiGraph that contains a pair of edges \((u, v)\) and \((v, u)\) iff \((u, v)\) is not a self-loop, and at least one of \((u, v)\) and \((v, u)\) exists in \(G \).

For each edge \((u, v)\) in \(R \), \(R[u][v][\text{\textquoteleft\text{capacity\textquoteleft}}] \) is equal to the capacity of \((u, v)\) in \(G \) if it exists in \(G \) or zero otherwise. If the capacity is infinite, \(R[u][v][\text{\textquoteleft\text{capacity\textquoteleft}}] \) will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in \(R\.graph[\text{\textquoteleft\text{inf\textquoteleft}}] \). For each edge \((u, v)\) in \(R \), \(R[u][v][\text{\textquoteleft\text{flow\textquoteleft}}] \) represents the flow function of \((u, v)\) and satisfies \(R[u][v][\text{\textquoteleft\text{flow\textquoteleft}}] = -R[v][u][\text{\textquoteleft\text{flow\textquoteleft}}] \).

The flow value, defined as the total flow into \(t \), the sink, is stored in \(R\.graph[\text{\textquoteleft\text{flow_value\textquoteleft}}] \). If \(\text{cutoff} \) is not specified, reachability to \(t \) using only edges \((u, v)\) such that \(R[u][v][\text{\textquoteleft\text{flow\textquoteleft}}] < R[u][v][\text{\textquoteleft\text{capacity\textquoteleft}}] \) induces a minimum \(s-t \) cut.

Examples

```python
>>> import networkx as nx
>>> from networkx.algorithms.flow import shortest_augmenting_path

G = nx.DiGraph()
G.add_edge('x','a', capacity=3.0)
G.add_edge('x','b', capacity=1.0)
G.add_edge('a','c', capacity=3.0)
G.add_edge('b','c', capacity=5.0)
G.add_edge('b','d', capacity=4.0)
G.add_edge('d','e', capacity=2.0)
G.add_edge('c','y', capacity=2.0)
G.add_edge('e','y', capacity=3.0)
R = shortest_augmenting_path(G, 'x', 'y')
flow_value = nx.maximum_flow_value(G, 'x', 'y')
flow_value
3.0
flow_value == R\.graph[\text{\textquoteleft\text{flow_value\textquoteleft}}]
True
```

4.22.4 Preflow-Push

\texttt{preflow_push}(G, s, t[, capacity, residual, ...]) Find a maximum single-commodity flow using the highest-label preflow-push algorithm.

\texttt{preflow_push} \((G, s, t, \text{capacity}='capacity', \text{residual}=None, \text{global_relabel_freq}=1, \text{value_only}=False) \)

Find a maximum single-commodity flow using the highest-label preflow-push algorithm.

This function returns the residual network resulting after computing the maximum flow. See below for details about the conventions NetworkX uses for defining residual networks.

This algorithm has a running time of \(O(n^2 \sqrt{m}) \) for \(n \) nodes and \(m \) edges.

Parameters
• G (NetworkX graph) – Edges of the graph are expected to have an attribute called ‘capacity’. If this attribute is not present, the edge is considered to have infinite capacity.

• s (node) – Source node for the flow.

• t (node) – Sink node for the flow.

• capacity (string) – Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: ‘capacity’.

• residual (NetworkX graph) – Residual network on which the algorithm is to be executed. If None, a new residual network is created. Default value: None.

• global_relabel_freq (integer, float) – Relative frequency of applying the global re-labeling heuristic to speed up the algorithm. If it is None, the heuristic is disabled. Default value: 1.

• value_only (bool) – If False, compute a maximum flow; otherwise, compute a maximum preflow which is enough for computing the maximum flow value. Default value: False.

Returns R – Residual network after computing the maximum flow.

Return type NetworkX DiGraph

Raises

• NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised.

• NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

See also:

maximum_flow(), minimum_cut(), edmonds_karp(), shortest_augmenting_path()

Notes

The residual network R from an input graph G has the same nodes as G. R is a DiGraph that contains a pair of edges (u, v) and (v, u) iff (u, v) is not a self-loop, and at least one of (u, v) and (v, u) exists in G. For each node u in R, R.node[u][‘excess’] represents the difference between flow into u and flow out of u.

For each edge (u, v) in R, R[u][v][‘capacity’] is equal to the capacity of (u, v) in G if it exists in G or zero otherwise. If the capacity is infinite, R[u][v][‘capacity’] will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in R.graph[‘inf’]. For each edge (u, v) in R, R[u][v][‘flow’] represents the flow function of (u, v) and satisfies R[u][v][‘flow’] == -R[v][u][‘flow’].

The flow value, defined as the total flow into t, the sink, is stored in R.graph[‘flow_value’]. Reachability to t using only edges (u, v) such that R[u][v][‘flow’] < R[u][v][‘capacity’] induces a minimum s-t cut.

Examples

```python
>>> import networkx as nx
>>> from networkx.algorithms.flow import preflow_push
```
The functions that implement flow algorithms and output a residual network, such as this one, are not imported to the base NetworkX namespace, so you have to explicitly import them from the flow package.

```python
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = preflow_push(G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value == R.graph['flow_value']
True
>>> # preflow_push also stores the maximum flow value
>>> # in the excess attribute of the sink node t
>>> flow_value == R.node['y']['excess']
True
>>> # For some problems, you might only want to compute a
>>> # maximum preflow.
>>> R = preflow_push(G, 'x', 'y', value_only=True)
>>> flow_value == R.graph['flow_value']
True
>>> flow_value == R.node['y']['excess']
True
```

4.22.5 Utils

`build_residual_network(G, capacity)` Build a residual network and initialize a zero flow.

`build_residual_network`

Build a residual network and initialize a zero flow.

The residual network \(R \) from an input graph \(G \) has the same nodes as \(G \). \(R \) is a DiGraph that contains a pair of edges \((u, v)\) and \((v, u)\) iff \((u, v)\) is not a self-loop, and at least one of \((u, v)\) and \((v, u)\) exists in \(G \).

For each edge \((u, v)\) in \(R \), \(R[u][v][\text{`capacity`}] \) is equal to the capacity of \((u, v)\) in \(G \) if it exists in \(G \) or zero otherwise. If the capacity is infinite, \(R[u][v][\text{`capacity`}] \) will have a high arbitrary finite value that does not affect the solution of the problem. This value is stored in \(R\).\text{`graph`}[\text{`inf`}]. For each edge \((u, v)\) in \(R \), \(R[u][v][\text{`flow`}] \) represents the flow function of \((u, v)\) and satisfies \(R[u][v][\text{`flow`}] = -R[v][u][\text{`flow`}] \).

The flow value, defined as the total flow into \(t \), the sink, is stored in \(R\).\text{`graph`}[\text{`flow_value`}]. If cutoff is not specified, reachability to \(t \) using only edges \((u, v)\) such that \(R[u][v][\text{`flow`}] < R[u][v][\text{`capacity`}] \) induces a minimum \(s \)-t cut.

4.22.6 Network Simplex
network_simplex

network_simplex(G[, demand, capacity, weight])

Find a minimum cost flow satisfying all demands in digraph G.

This is a primal network simplex algorithm that uses the leaving arc rule to prevent cycling.

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node.

Parameters

- G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands is to be found.
- demand (string) – Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: ‘demand’.
- capacity (string) – Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: ‘capacity’.
- weight (string) – Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: ‘weight’.

Returns

- flowCost (integer, float) – Cost of a minimum cost flow satisfying all demands.
- flowDict (dictionary) – Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v).

Raises

- NetworkXError – This exception is raised if the input graph is not directed, not connected or is a multigraph.
- NetworkXUnfeasible – This exception is raised in the following situations:
 - The sum of the demands is not zero. Then, there is no flow satisfying all demands.
 - There is no flow satisfying all demand.
- NetworkXUnbounded – This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below.
Notes

This algorithm is not guaranteed to work if edge weights are floating point numbers (overflows and roundoff errors can cause problems).

See also:

- `cost_of_flow()`
- `max_flow_min_cost()`
- `min_cost_flow()`
- `min_cost_flow_cost()`

Examples

A simple example of a min cost flow problem.

```python
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand=-5)
>>> G.add_node('d', demand=5)
>>> G.add_edge('a', 'b', weight=3, capacity=4)
>>> G.add_edge('a', 'c', weight=6, capacity=10)
>>> G.add_edge('b', 'd', weight=1, capacity=9)
>>> G.add_edge('c', 'd', weight=2, capacity=5)
>>> flowCost, flowDict = nx.network_simplex(G)
>>> flowCost
24
>>> flowDict
{'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}}
```

The mincost flow algorithm can also be used to solve shortest path problems. To find the shortest path between two nodes u and v, give all edges an infinite capacity, give node u a demand of -1 and node v a demand a 1. Then run the network simplex. The value of a min cost flow will be the distance between u and v and edges carrying positive flow will indicate the path.

```python
>>> G=nx.DiGraph()
>>> G.add_weighted_edges_from([('s', 'u', 10), ('s', 'x', 5), ...
... ('u', 'v', 1), ('u', 'x', 2),
... ('v', 'y', 1), ('x', 'u', 3),
... ('x', 'v', 5), ('x', 'y', 2),
... ('y', 's', 7), ('y', 'v', 6)])
>>> G.add_node('s', demand = -1)
>>> G.add_node('v', demand = 1)
>>> flowCost, flowDict = nx.network_simplex(G)
>>> flowCost == nx.shortest_path_length(G, 's', 'v', weight='weight')
True
>>> sorted([(u, v) for u in flowDict for v in flowDict[u] if flowDict[u][v] > 0])
[('s', 'x'), ('u', 'v'), ('x', 'u')]
>>> nx.shortest_path(G, 's', 'v', weight = 'weight')
['s', 'x', 'u', 'v']
```

It is possible to change the name of the attributes used for the algorithm.

```python
>>> G = nx.DiGraph()
>>> G.add_node('p', spam=-4)
>>> G.add_node('q', spam=2)
>>> G.add_node('a', spam=-2)
>>> G.add_node('d', spam=-1)
>>> G.add_node('t', spam=2)
>>> G.add_node('w', spam=3)
>>> G.add_edge('p', 'q', cost=7, vacancies=5)
```
>>> G.add_edge('p', 'a', cost=1, vacancies=4)
>>> G.add_edge('q', 'd', cost=2, vacancies=3)
>>> G.add_edge('t', 'q', cost=1, vacancies=2)
>>> G.add_edge('a', 't', cost=2, vacancies=4)
>>> G.add_edge('d', 'w', cost=3, vacancies=4)
>>> G.add_edge('t', 'w', cost=4, vacancies=1)
>>> flowCost, flowDict = nx.network_simplex(G, demand='spam',
... capacity='vacancies',
... weight='cost')
>>> flowCost
37
>>> flowDict
{'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, 'w': 1}, 'w': {}}

References

min_cost_flow_cost

`min_cost_flow_cost (G, demand='demand', capacity='capacity', weight='weight')`

Find the cost of a minimum cost flow satisfying all demands in digraph G.

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node.

Parameters

- **G** *(NetworkX graph)* – DiGraph on which a minimum cost flow satisfying all demands is to be found.
- **demand** *(string)* – Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: ‘demand’.
- **capacity** *(string)* – Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: ‘capacity’.
- **weight** *(string)* – Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: ‘weight’.

Returns flowCost – Cost of a minimum cost flow satisfying all demands.

Return type integer, float

Raises

- **NetworkXError** – This exception is raised if the input graph is not directed or not connected.
- **NetworkXUnfeasible** – This exception is raised in the following situations:
 - The sum of the demands is not zero. Then, there is no flow satisfying all demands.
 - There is no flow satisfying all demand.
• NetworkXUnbounded – This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below.

See also:

cost_of_flow(), max_flow_min_cost(), min_cost_flow(), network_simplex()

Examples

A simple example of a min cost flow problem.

```python
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowCost = nx.min_cost_flow_cost(G)
>>> flowCost
24
```

min_cost_flow

min_cost_flow(G, demand='demand', capacity='capacity', weight='weight')

Return a minimum cost flow satisfying all demands in digraph G.

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node.

Parameters

• G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands is to be found.

• demand (string) – Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: ‘demand’.

• capacity (string) – Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: ‘capacity’.

• weight (string) – Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: ‘weight’.

Returns flowDict – Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v).

Return type dictionary

 Raises
• **NetworkXError** – This exception is raised if the input graph is not directed or not connected.

• **NetworkXUnfeasible** – This exception is raised in the following situations:
 – The sum of the demands is not zero. Then, there is no flow satisfying all demands.
 – There is no flow satisfying all demand.

• **NetworkXUnbounded** – This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below.

See also:

cost_of_flow(), max_flow_min_cost(), min_cost_flow_cost(), network_simplex()

Examples

A simple example of a min cost flow problem.

```python
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowDict = nx.min_cost_flow(G)
```

```python
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowDict = nx.min_cost_flow(G)
```

cost_of_flow

cost_of_flow (G, flowDict, weight='weight')

Compute the cost of the flow given by flowDict on graph G.

Note that this function does not check for the validity of the flow flowDict. This function will fail if the graph G and the flow don’t have the same edge set.

Parameters

• **G** (*NetworkX graph*) – DiGraph on which a minimum cost flow satisfying all demands is to be found.

• **weight** (*string*) – Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: ‘weight’.

• **flowDict** (*dictionary*) – Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v).

Returns *cost* – The total cost of the flow. This is given by the sum over all edges of the product of the edge’s flow and the edge’s weight.

Return type Integer, float

See also:

max_flow_min_cost(), min_cost_flow(), min_cost_flow_cost(), network_simplex()
max_flow_min_cost

max_flow_min_cost *(G, s, t, capacity=’capacity’, weight=’weight’)*
Return a maximum (s, t)-flow of minimum cost.

G is a digraph with edge costs and capacities. There is a source node s and a sink node t. This function finds a maximum flow from s to t whose total cost is minimized.

Parameters

- **G** *(NetworkX graph)* – DiGraph on which a minimum cost flow satisfying all demands is to be found.
- **s** *(node label)* – Source of the flow.
- **t** *(node label)* – Destination of the flow.
- **capacity** *(string)* – Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: ‘capacity’.
- **weight** *(string)* – Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: ‘weight’.

Returns **flowDict** – Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v).

Return type dictionary

Raises

- **NetworkXError** – This exception is raised if the input graph is not directed or not connected.
- **NetworkXUnbounded** – This exception is raised if there is an infinite capacity path from s to t in G. In this case there is no maximum flow. This exception is also raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow is unbounded below.

See also:

cost_of_flow(), min_cost_flow(), min_cost_flow_cost(), network_simplex()

Examples

```python
>>> G = nx.DiGraph()
>>> G.add_edges_from([(1, 2, {'capacity': 12, 'weight': 4}),
                   ..., (1, 3, {'capacity': 20, 'weight': 6}),
                   ..., (2, 3, {'capacity': 6, 'weight': -3}),
                   ..., (2, 6, {'capacity': 14, 'weight': 1}),
                   ..., (3, 4, {'weight': 9}),
                   ..., (3, 5, {'capacity': 10, 'weight': 5}),
                   ..., (4, 2, {'capacity': 19, 'weight': 13}),
                   ..., (4, 5, {'capacity': 4, 'weight': 0}),
                   ..., (5, 7, {'capacity': 28, 'weight': 2}),
                   ..., (6, 5, {'capacity': 11, 'weight': 1}),
                   ..., (6, 7, {'weight': 8}),
                   ..., (7, 4, {'capacity': 6, 'weight': 6})])
>>> mincostFlow = nx.max_flow_min_cost(G, 1, 7)
>>> mincost = nx.cost_of_flow(G, mincostFlow)
```

4.22. Flows 275
```python
>>> mincost
373
>>> from networkx.algorithms.flow import maximum_flow
>>> maxFlow = maximum_flow(G, 1, 7)[1]
>>> nx.cost_of_flow(G, maxFlow) >= mincost
True
>>> mincostFlowValue = (sum((mincostFlow[u][7] for u in G.predecessors(7)))
... - sum((mincostFlow[7][v] for v in G.successors(7))))
>>> mincostFlowValue == nx.maximum_flow_value(G, 1, 7)
True
```

4.22.7 Capacity Scaling Minimum Cost Flow

`capacity_scaling(G[, demand, capacity, ...])` Find a minimum cost flow satisfying all demands in digraph G.

capacity_scaling

Find a minimum cost flow satisfying all demands in digraph G.

This is a capacity scaling successive shortest augmenting path algorithm.

G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node.

Parameters

- **G** (*NetworkX graph*) – DiGraph or MultiDiGraph on which a minimum cost flow satisfying all demands is to be found.

- **demand** (*string*) – Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: ‘demand’.

- **capacity** (*string*) – Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: ‘capacity’.

- **weight** (*string*) – Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: ‘weight’.

- **heap** (*class*) – Type of heap to be used in the algorithm. It should be a subclass of MinHeap or implement a compatible interface.

If a stock heap implementation is to be used, BinaryHeap is recommended over PairingHeap for Python implementations without optimized attribute accesses (e.g., CPython) despite a slower asymptotic running time. For Python implementations with optimized attribute accesses (e.g., PyPy), PairingHeap provides better performance. Default value: BinaryHeap.

Returns
• **flowCost** (*integer*) – Cost of a minimum cost flow satisfying all demands.

• **flowDict** (*dictionary*) – Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v) if G is a digraph.

 Dictionary of dictionaries of dictionaries keyed by nodes such that flowDict[u][v][key] is the flow edge (u, v, key) if G is a multidigraph.

Raises

• **NetworkXError** – This exception is raised if the input graph is not directed, not connected.

• **NetworkXUnfeasible** – This exception is raised in the following situations:
 – The sum of the demands is not zero. Then, there is no flow satisfying all demands.
 – There is no flow satisfying all demand.

• **NetworkXUnbounded** – This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below.

Notes

This algorithm does not work if edge weights are floating-point numbers.

See also:

network_simplex()

Examples

A simple example of a min cost flow problem.

```python
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowCost, flowDict = nx.capacity_scaling(G)
>>> flowCost
24
>>> flowDict
{'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}}
```

It is possible to change the name of the attributes used for the algorithm.

```python
>>> G = nx.DiGraph()
>>> G.add_node('p', spam = -4)
>>> G.add_node('q', spam = 2)
>>> G.add_node('a', spam = -2)
>>> G.add_node('d', spam = -1)
>>> G.add_node('t', spam = 2)
>>> G.add_node('w', spam = 3)
>>> G.add_edge('p', 'q', cost = 7, vacancies = 5)
>>> G.add_edge('p', 'a', cost = 1, vacancies = 4)
```
>>> G.add_edge('q', 'd', cost = 2, vacancies = 3)
>>> G.add_edge('t', 'q', cost = 1, vacancies = 2)
>>> G.add_edge('a', 't', cost = 2, vacancies = 4)
>>> G.add_edge('d', 'w', cost = 3, vacancies = 4)
>>> G.add_edge('t', 'w', cost = 4, vacancies = 1)
>>> flowCost, flowDict = nx.capacity_scaling(G, demand = 'spam',
... capacity = 'vacancies',
... weight = 'cost')

>>> flowCost
37

>>> flowDict
{'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, 'w': 1}, 'w': {}}

4.23 Graphical degree sequence

Test sequences for graphiness.

- `is_graphical(sequence[, method])` Returns True if sequence is a valid degree sequence.
- `is_digraphical(in_sequence, out_sequence)` Returns True if some directed graph can realize the in- and out-degree sequences.
- `is_multigraphical(sequence)` Returns True if some multigraph can realize the sequence.
- `is_pseudographical(sequence)` Returns True if some pseudograph can realize the sequence.
- `is_valid_degree_sequence_havel_hakimi(...)` Returns True if deg_sequence can be realized by a simple graph.
- `is_valid_degree_sequence_erdos_gallai(...)` Returns True if deg_sequence can be realized by a simple graph.

4.23.1 is_graphical

- `is_graphical(sequence, method='eg')` Returns True if sequence is a valid degree sequence.

 A degree sequence is valid if some graph can realize it.

 Parameters sequence (list or iterable container) – A sequence of integer node degrees

 method [“eg” | “hh”] The method used to validate the degree sequence. “eg” corresponds to the Erdős-Gallai algorithm, and “hh” to the Havel-Hakimi algorithm.

 Returns valid – True if the sequence is a valid degree sequence and False if not.

 Return type bool

Examples

```python
g = nx.path_graph(4)
sequence = G.degree().values()
nx.is_valid_degree_sequence(sequence)
True
```

References

- Erdős-Gallai [EG1960], [choudum1986]
4.23.2 is_digraphical

is_digraphical \((\text{in_ sequence}, \text{out_ sequence}) \)

Returns True if some directed graph can realize the in- and out-degree sequences.

Parameters

- **in_sequence** \((\text{list or iterable container})\) – A sequence of integer node in-degrees
- **out_sequence** \((\text{list or iterable container})\) – A sequence of integer node out-degrees

Returns **valid** – True if in and out-sequences are digraphic False if not.

Return type **bool**

Notes

This algorithm is from Kleitman and Wang 91. The worst case runtime is \(O(s \times \log n)\) where \(s\) and \(n\) are the sum and length of the sequences respectively.

References

4.23.3 is_multigraphical

is_multigraphical \((\text{sequence})\)

Returns True if some multigraph can realize the sequence.

Parameters **deg_sequence** \((\text{list})\) – A list of integers

Returns **valid** – True if deg_sequence is a multigraphic degree sequence and False if not.

Return type **bool**

Notes

The worst-case run time is \(O(n)\) where \(n\) is the length of the sequence.

References

4.23.4 is_pseudographical

is_pseudographical \((\text{sequence})\)

Returns True if some pseudograph can realize the sequence.

Every nonnegative integer sequence with an even sum is pseudographical (see 92).

Parameters **sequence** \((\text{list or iterable container})\) – A sequence of integer node degrees

Returns **valid** – True if the sequence is a pseudographic degree sequence and False if not.

Return type: bool

Notes
The worst-case run time is O(n) where n is the length of the sequence.

References

4.23.5 is_valid_degree_sequence_havel_hakimi

is_valid_degree_sequence_havel_hakimi (deg_sequence)
Returns True if deg_sequence can be realized by a simple graph.

The validation proceeds using the Havel-Hakimi theorem. Worst-case run time is: O(s) where s is the sum of the sequence.

Parameters deg_sequence (list) – A list of integers where each element specifies the degree of a node in a graph.

Returns valid – True if deg_sequence is graphical and False if not.

Return type: bool

Notes
The ZZ condition says that for the sequence d if

\[|d| \geq \frac{(\max(d) + \min(d) + 1)^2}{4 \times \min(d)} \]

then d is graphical. This was shown in Theorem 6 in 93.

References
[havel1955], [hakimi1962], [CL1996]

4.23.6 is_valid_degree_sequence_erdos_gallai

is_valid_degree_sequence_erdos_gallai (deg_sequence)
Returns True if deg_sequence can be realized by a simple graph.

The validation is done using the Erdős-Gallai theorem [EG1960].

Parameters deg_sequence (list) – A list of integers

Returns valid – True if deg_sequence is graphical and False if not.

Return type: bool

Notes

This implementation uses an equivalent form of the Erdős-Gallai criterion. Worst-case run time is: $O(n)$ where n is the length of the sequence.

Specifically, a sequence d is graphical if and only if the sum of the sequence is even and for all strong indices k in the sequence,

$$
\sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{j=k+1}^{n} \min(d_i,k) = k(n-1) - (k \sum_{j=0}^{k-1} n_j - \sum_{j=0}^{k-1} jn_j)
$$

A strong index k is any index where $d_k \geq k$ and the value n_j is the number of occurrences of j in d. The maximal strong index is called the Durfee index.

This particular rearrangement comes from the proof of Theorem 3 in 94.

The ZZ condition says that for the sequence d if

$$|d| > (\max(d) + \min(d) + 1)^2
$$

then d is graphical. This was shown in Theorem 6 in 2.

References

[EG1960], [choudum1986]

4.24 Hierarchy

Flow Hierarchy.

\[flow_hierarchy(G, weight)\] Returns the flow hierarchy of a directed network.

4.24.1 flow_hierarchy

flow_hierarchy (G , weight=None)

Returns the flow hierarchy of a directed network.

Flow hierarchy is defined as the fraction of edges not participating in cycles in a directed graph 95.

Parameters

- G (DiGraph or MultiDiGraph) – A directed graph
- \texttt{weight} (key,optional (default=None)) – Attribute to use for node weights. If None the weight defaults to 1.

Returns h – Flow hierarchy value

Return type

float

Notes

The algorithm described in \(^1\) computes the flow hierarchy through exponentiation of the adjacency matrix. This function implements an alternative approach that finds strongly connected components. An edge is in a cycle if and only if it is in a strongly connected component, which can be found in \(O(m)\) time using Tarjan’s algorithm.

References

4.25 Hybrid

Provides functions for finding and testing for locally \((k, l)\)-connected graphs.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kl_connected_subgraph</td>
<td>Returns the maximum locally ((k, l))-connected subgraph of (G).</td>
</tr>
<tr>
<td>is_kl_connected</td>
<td>Returns (True) if and only if (G) is locally ((k, l))-connected.</td>
</tr>
</tbody>
</table>

4.25.1 kl_connected_subgraph

kl_connected_subgraph \((G, k, l, low_memory=False, same_as_graph=False)\)

Returns the maximum locally \((k, l)\)-connected subgraph of \(G\).

A graph is locally \((k, l)\)-connected if for each edge \((u, v)\) in the graph there are at least \(l\) edge-disjoint paths of length at most \(k\) joining \(u\) to \(v\).

Parameters

- \(G\) (NetworkX graph) – The graph in which to find a maximum locally \((k, l)\)-connected subgraph.
- \(k\) (integer) – The maximum length of paths to consider. A higher number means a looser connectivity requirement.
- \(l\) (integer) – The number of edge-disjoint paths. A higher number means a stricter connectivity requirement.
- low_memory (bool) – If this is \(True\), this function uses an algorithm that uses slightly more time but less memory.
- same_as_graph (bool) – If this is \(True\) then return a tuple of the form \((H, is_same)\), where \(H\) is the maximum locally \((k, l)\)-connected subgraph and \(is_same\) is a Boolean representing whether \(G\) is locally \((k, l)\)-connected (and hence, whether \(H\) is simply a copy of the input graph \(G\)).

Returns

If \(same_as_graph\) is \(True\), then this function returns a two-tuple as described above. Otherwise, it returns only the maximum locally \((k, l)\)-connected subgraph.

Return type

NetworkX graph or two-tuple

See also:

is_kl_connected()
4.25.2 is_kl_connected

is_kl_connected \((G, k, l, low_memory=\text{False})\)

Returns True if and only if \(G\) is locally \((k, l)\)-connected.

A graph is locally \((k, l)\)-connected if for each edge \((u, v)\) in the graph there are at least \(l\) edge-disjoint paths of length at most \(k\) joining \(u\) to \(v\).

Parameters

- \(G\) \((\text{NetworkX graph})\) – The graph to test for local \((k, l)\)-connectedness.
- \(k\) \((\text{integer})\) – The maximum length of paths to consider. A higher number means a looser connectivity requirement.
- \(l\) \((\text{integer})\) – The number of edge-disjoint paths. A higher number means a stricter connectivity requirement.
- \(low_memory\) \((\text{bool})\) – If this is True, this function uses an algorithm that uses slightly more time but less memory.

Returns Whether the graph is locally \((k, l)\)-connected subgraph.

Return type bool

See also:
kl_connected_subgraph()

References

4.26 Isolates

Functions for identifying isolate (degree zero) nodes.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>is_isolate ((G, n))</td>
<td>Determine of node (n) is an isolate (degree zero).</td>
</tr>
<tr>
<td>isolates ((G))</td>
<td>Return list of isolates in the graph.</td>
</tr>
</tbody>
</table>

4.26.1 is_isolate

is_isolate \((G, n)\)

Determine of node \(n\) is an isolate (degree zero).

Parameters

- \(G\) \((\text{graph})\) – A networkx graph
- \(n\) \((\text{node})\) – A node in \(G\)

Returns isolate – True if \(n\) has no neighbors, False otherwise.

Return type bool
NetworkX Reference, Release 1.10

Examples

```python
>>> G=nx.Graph()
>>> G.add_edge(1,2)
>>> G.add_node(3)
>>> nx.is_isolate(G,2)
False
>>> nx.is_isolate(G,3)
True
```

4.26.2 isolates

isolates(G)

Return list of isolates in the graph.

Isolates are nodes with no neighbors (degree zero).

Parameters

• G (graph) – A networkx graph

Returns isolates – List of isolate nodes.

Return type list

Examples

```python
>>> G = nx.Graph()
>>> G.add_edge(1,2)
>>> G.add_node(3)
>>> nx.isolates(G)
[3]
```

To remove all isolates in the graph use >>> G.remove_nodes_from(nx.isolates(G)) >>> G.nodes() [1, 2]

For digraphs isolates have zero in-degree and zero out_degree >>> G = nx.DiGraph([(0,1),(1,2)]) >>> G.add_node(3) >>> nx.isolates(G) [3]

4.27 Isomorphism

is_isomorphic(G1, G2[, node_match, edge_match])

Returns True if the graphs G1 and G2 are isomorphic and False otherwise.

Parameters

• G1, G2 (Graph) – The two graphs G1 and G2 must be the same type.
• node_match (callable) – A function that returns True if node n1 in G1 and n2 in G2
• edge_match (callable) – A function that returns True if edge e1 in G1 and e2 in G2

Could be isomorphic

could_be_isomorphic(G1, G2)

Returns False if graphs are definitely not isomorphic.

faster_could_be_isomorphic(G1, G2)

Returns False if graphs are definitely not isomorphic.

faster_could_be_isomorphic(G1, G2)

Returns False if graphs are definitely not isomorphic.

4.27.1 is_isomorphic

is_isomorphic(G1, G2, node_match=None, edge_match=None)

Returns True if the graphs G1 and G2 are isomorphic and False otherwise.

Parameters

• G1, G2 (Graph) – The two graphs G1 and G2 must be the same type.
• node_match (callable) – A function that returns True if node n1 in G1 and n2 in G2
should be considered equal during the isomorphism test. If node_match is not specified then node attributes are not considered.

The function will be called like

```python
node_match(G1.node[n1], G2.node[n2]).
```

That is, the function will receive the node attribute dictionaries for n1 and n2 as inputs.

- `edge_match (callable)` – A function that returns True if the edge attribute dictionary for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during the isomorphism test. If edge_match is not specified then edge attributes are not considered.

The function will be called like

```python
edge_match(G1[u1][v1], G2[u2][v2]).
```

That is, the function will receive the edge attribute dictionaries of the edges under consideration.

Notes

Uses the vf2 algorithm.

Examples

```python
>>> import networkx.algorithms.isomorphism as iso

For digraphs G1 and G2, using ‘weight’ edge attribute (default: 1)

```python
>>> G1 = nx.DiGraph()
>>> G2 = nx.DiGraph()
>>> G1.add_path([1,2,3,4],weight=1)
>>> G2.add_path([10,20,30,40],weight=2)
>>> em = iso.numerical_edge_match('weight', 1)
>>> nx.is_isomorphic(G1, G2) # no weights considered
True
>>> nx.is_isomorphic(G1, G2, edge_match=em) # match weights
False
```

For multidigraphs G1 and G2, using ‘fill’ node attribute (default: ‘’)

```python
>>> G1 = nx.MultiDiGraph()
>>> G2 = nx.MultiDiGraph()
>>> G1.add_path([1,2,3,4],weight=3, linewidth=2.5)
>>> G2.add_path([10,20,30,40],weight=3)
>>> nm = iso.categorical_edge_match('fill', 'red')
>>> nx.is_isomorphic(G1, G2, node_match=nm)
True
```

For multidigraphs G1 and G2, using ‘weight’ edge attribute (default: 7)

```python
>>> G1 = nx.MultiDiGraph()
>>> G2 = nx.MultiDiGraph()
>>> G1.add_path([1,2,3,4],weight=3, linewidth=2.5)
>>> G2.add_path([10,20,30,40],weight=3)
>>> nm = iso.categorical_edge_match('fill', 'red')
>>> nx.is_isomorphic(G1, G2, node_match=nm)
True
```

---


---

4.27. Isomorphism 285
>>> G1.add_edge(1,2, weight=7)
>>> G2.add_edge(10,20)
>>> em = iso.numerical_multiedge_match('weight', 7, rtol=1e-6)
>>> nx.is_isomorphic(G1, G2, edge_match=em)
True

For multigraphs G1 and G2, using ‘weight’ and ‘linewidth’ edge attributes with default values 7 and 2.5. Also using ‘fill’ node attribute with default value ‘red’.

>>> em = iso.numerical_multiedge_match(['weight', 'linewidth'], [7, 2.5])
>>> nm = iso.categorical_node_match('fill', 'red')
>>> nx.is_isomorphic(G1, G2, edge_match=em, node_match=nm)
True

See also:

d numerical_node_match(), numerical_edge_match(), numerical_multiedge_match(),
categorical_node_match(), categorical_edge_match(), categorical_multiedge_match()

References

4.27.2 could_be_isomorphic

could_be_isomorphic(G1, G2)

Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism.

Parameters

G2 (G1,) – The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree, triangle, and number of cliques sequences.

4.27.3 fast_could_be_isomorphic

fast_could_be_isomorphic(G1, G2)

Returns False if graphs are definitely not isomorphic.

True does NOT guarantee isomorphism.

Parameters

G2 (G1,) – The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree and triangle sequences.

4.27.4 faster_could_be_isomorphic

faster_could_be_isomorphic(G1, G2)

Returns False if graphs are definitely not isomorphic.

True does NOT guarantee isomorphism.

Parameters

G2 (G1,) – The two graphs G1 and G2 must be the same type.
Notes

Checks for matching degree sequences.

4.27.5 Advanced Interface to VF2 Algorithm

VF2 Algorithm

An implementation of VF2 algorithm for graph isomorphism testing.
The simplest interface to use this module is to call networkx.is_isomorphic().

Introduction The GraphMatcher and DiGraphMatcher are responsible for matching graphs or directed graphs in a
predetermined manner. This usually means a check for an isomorphism, though other checks are also possible. For
example, a subgraph of one graph can be checked for isomorphism to a second graph.

Matching is done via syntactic feasibility. It is also possible to check for semantic feasibility. Feasibility, then, is
defined as the logical AND of the two functions.

To include a semantic check, the (Di)GraphMatcher class should be subclassed, and the semantic_feasibility() function
should be redefined. By default, the semantic feasibility function always returns True. The effect of this is that
semantics are not considered in the matching of G1 and G2.

Examples

Suppose G1 and G2 are isomorphic graphs. Verification is as follows:

```python
>>> from networkx.algorithms import isomorphism
>>> G1 = nx.path_graph(4)
>>> G2 = nx.path_graph(4)
>>> GM = isomorphism.GraphMatcher(G1, G2)
>>> GM.is_isomorphic()
True
```

GM.mapping stores the isomorphism mapping from G1 to G2.

```python
>>> GM.mapping
{0: 0, 1: 1, 2: 2, 3: 3}
```

Suppose G1 and G2 are isomorphic directed graphs graphs. Verification is as follows:

```python
>>> G1 = nx.path_graph(4, create_using=nx.DiGraph())
>>> G2 = nx.path_graph(4, create_using=nx.DiGraph())
>>> DiGM = isomorphism.DiGraphMatcher(G1, G2)
>>> DiGM.is_isomorphic()
True
```

DiGM.mapping stores the isomorphism mapping from G1 to G2.

```python
>>> DiGM.mapping
{0: 0, 1: 1, 2: 2, 3: 3}
```
Subgraph Isomorphism  Graph theory literature can be ambiguous about the meaning of the above statement, and we seek to clarify it now.

In the VF2 literature, a mapping $M$ is said to be a graph-subgraph isomorphism iff $M$ is an isomorphism between $G_2$ and a subgraph of $G_1$. Thus, to say that $G_1$ and $G_2$ are graph-subgraph isomorphic is to say that a subgraph of $G_1$ is isomorphic to $G_2$.

Other literature uses the phrase ‘subgraph isomorphic’ as in ‘$G_1$ does not have a subgraph isomorphic to $G_2$’. Another use is as an in adverb for isomorphic. Thus, to say that $G_1$ and $G_2$ are subgraph isomorphic is to say that a subgraph of $G_1$ is isomorphic to $G_2$.

Finally, the term ‘subgraph’ can have multiple meanings. In this context, ‘subgraph’ always means a ‘node-induced subgraph’. Edge-induced subgraph isomorphisms are not directly supported, but one should be able to perform the check by making use of nx.line_graph(). For subgraphs which are not induced, the term ‘monomorphism’ is preferred over ‘isomorphism’. Currently, it is not possible to check for monomorphisms.

Let $G=(N,E)$ be a graph with a set of nodes $N$ and set of edges $E$.

- **If $G'=(N',E')$ is a subgraph, then:** $N'$ is a subset of $N$ $E'$ is a subset of $E$
- **If $G'=(N',E')$ is a node-induced subgraph, then:** $N'$ is a subset of $N$ $E'$ is the subset of edges in $E$ relating nodes in $N'$
- **If $G'=(N',E')$ is an edge-induced subgraph, then:** $N'$ is the subset of nodes in $N$ related by edges in $E'$ $E'$ is a subset of $E$

References


See also:

- syntactic_feasibility
- semantic_feasibility

Notes

Modified to handle undirected graphs. Modified to handle multiple edges.

In general, this problem is NP-Complete.

Graph Matcher

```
GraphMatcher.__init__(G1, G2[, node_match, ...]) Initialize graph matcher.
GraphMatcher.initialize() Reinitializes the state of the algorithm.
GraphMatcher.is_isomorphic() Returns True if G1 and G2 are isomorphic graphs.
GraphMatcher.subgraph_is_isomorphic() Returns True if a subgraph of G1 is isomorphic to G2.
GraphMatcher.isomorphisms_iter() Generator over isomorphisms between G1 and G2.
GraphMatcher.subgraph_isomorphisms_iter() Generator over isomorphisms between a subgraph of G1 and G2.
GraphMatcher.candidate_pairs_iter() Iterator over candidate pairs of nodes in G1 and G2.
```
Table 4.72 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>GraphMatcher.match()</code></td>
<td>Extends the isomorphism mapping.</td>
</tr>
<tr>
<td><code>GraphMatcher.semantic_feasibility(G1_node, ...)</code></td>
<td>Returns True if mapping G1_node to G2_node is semantically feasible.</td>
</tr>
<tr>
<td><code>GraphMatcher.syntactic_feasibility(G1_node, ...)</code></td>
<td>Returns True if adding (G1_node, G2_node) is syntactically feasible.</td>
</tr>
</tbody>
</table>

__init__

GraphMatcher.__init__(G1, G2, node_match=None, edge_match=None)

Initialize graph matcher.

Parameters

- **G2 (G1)** – The graphs to be tested.
- **node_match (callable)** – A function that returns True iff node n1 in G1 and n2 in G2 should be considered equal during the isomorphism test. The function will be called like:

  ```python
 node_match(G1.node[n1], G2.node[n2])
  ```

  That is, the function will receive the node attribute dictionaries of the nodes under consideration. If None, then no attributes are considered when testing for an isomorphism.

- **edge_match (callable)** – A function that returns True iff the edge attribute dictionary for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be considered equal during the isomorphism test. The function will be called like:

  ```python
 edge_match(G1[u1][v1], G2[u2][v2])
  ```

  That is, the function will receive the edge attribute dictionaries of the edges under consideration. If None, then no attributes are considered when testing for an isomorphism.

initialize

GraphMatcher.initialize()

Reinitializes the state of the algorithm.

This method should be redefined if using something other than GMState. If only subclassing GraphMatcher, a redefinition is not necessary.

is_isomorphic

GraphMatcher.is_isomorphic()

Returns True if G1 and G2 are isomorphic graphs.

subgraph_is_isomorphic

GraphMatcher.subgraph_is_isomorphic()

Returns True if a subgraph of G1 is isomorphic to G2.

isomorphisms_iter

GraphMatcher.isomorphisms_iter()

Generator over isomorphisms between G1 and G2.

subgraph_isomorphisms_iter

GraphMatcher.subgraph_isomorphisms_iter()

Generator over isomorphisms between a subgraph of G1 and G2.
**GraphMatcher**

- **candidate_pairs_iter**
  
  Iterator over candidate pairs of nodes in G1 and G2.

- **match**
  
  Extends the isomorphism mapping.

  This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping.

- **semantic_feasibility**
  
  Returns True if mapping G1_node to G2_node is semantically feasible.

- **syntactic_feasibility**
  
  Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an isomorphism to be found.

**DiGraphMatcher**

- **DiGraphMatcher.__init__**(G1, G2, ...,)**
  
  Initialize graph matcher.

  Initialize graph matcher.

  Parameters

  - G2 (G1) – The graphs to be tested.
  - node_match (callable) – A function that returns True iff node n1 in G1 and n2 in G2 should be considered equal during the isomorphism test. The function will be called like:

    ```python
 node_match(G1.node[n1], G2.node[n2])
    ```

    That is, the function will receive the node attribute dictionaries of the nodes under consideration. If None, then no attributes are considered when testing for an isomorphism.
• **edge_match** (*callable*) – A function that returns True iff the edge attribute dictionary for the pair of nodes \((u_1, v_1)\) in \(G_1\) and \((u_2, v_2)\) in \(G_2\) should be considered equal during the isomorphism test. The function will be called like:

\[
\text{edge_match}(G1[u_1][v_1], G2[u_2][v_2])
\]

That is, the function will receive the edge attribute dictionaries of the edges under consideration. If None, then no attributes are considered when testing for an isomorphism.

**initialize**

\[\text{DiGraphMatcher}().\text{initialize}()\]

Reinitializes the state of the algorithm.

This method should be redefined if using something other than DiGMState. If only subclassing GraphMatcher, a redefinition is not necessary.

**is_isomorphic**

\[\text{DiGraphMatcher}().\text{is_isomorphic}()\]

Returns True if \(G_1\) and \(G_2\) are isomorphic graphs.

**subgraph_is_isomorphic**

\[\text{DiGraphMatcher}().\text{subgraph_is_isomorphic}()\]

Returns True if a subgraph of \(G_1\) is isomorphic to \(G_2\).

**isomorphisms_iter**

\[\text{DiGraphMatcher}().\text{isomorphisms_iter}()\]

Generator over isomorphisms between \(G_1\) and \(G_2\).

**subgraph_isomorphisms_iter**

\[\text{DiGraphMatcher}().\text{subgraph_isomorphisms_iter}()\]

Generator over isomorphisms between a subgraph of \(G_1\) and \(G_2\).

**candidate_pairs_iter**

\[\text{DiGraphMatcher}().\text{candidate_pairs_iter}()\]

Iterator over candidate pairs of nodes in \(G_1\) and \(G_2\).

**match**

\[\text{DiGraphMatcher}().\text{match}()\]

Extends the isomorphism mapping.

This function is called recursively to determine if a complete isomorphism can be found between \(G_1\) and \(G_2\). It cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping.

**semantic_feasibility**

\[\text{DiGraphMatcher}().\text{semantic_feasibility}(G1\text{-node}, G2\text{-node})\]

Returns True if mapping \(G_1\text{-node}\) to \(G_2\text{-node}\) is semantically feasible.
syntactic_feasibility

DiGraphMatcher.syntactic_feasibility(G1_node, G2_node)
Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an isomorphism to be found.

Match helpers

categorical_node_match(attr, default)
Returns a comparison function for a categorical node attribute.

Parameters
- attr (string | list) – The categorical node attribute to compare, or a list of categorical node attributes to compare.
- default (value | list) – The default value for the categorical node attribute, or a list of default values for the categorical node attributes.

Returns match – The customized, categorical node match function.

Examples

```python
>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_node_match('size', 1)
>>> nm = iso.categorical_node_match(['color', 'size'], ['red', 2])
```

categorical_edge_match

categorical_edge_match(attr, default)
Returns a comparison function for a categorical edge attribute.

Parameters
- attr (string | list) – The categorical edge attribute to compare, or a list of categorical edge attributes to compare.
- default (value | list) – The default value for the categorical edge attribute, or a list of default values for the categorical edge attributes.

Returns match – The customized, categorical edge match function.

Examples

```python
>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_edge_match('color', 'red')
```
• `attr (string | list)` – The categorical edge attribute to compare, or a list of categorical edge attributes to compare.

• `default (value | list)` – The default value for the categorical edge attribute, or a list of default values for the categorical edge attributes.

**Returns** `match` – The customized, categorical `edge_match` function.

**Return type** `function`

**Examples**

```python
>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_edge_match('size', 1)
>>> nm = iso.categorical_edge_match(['color', 'size'], ['red', 2])
```

categorical_multiedge_match
categorical_multiedge_match (attr, default)

Returns a comparison function for a categorical edge attribute.

The value(s) of the attr(s) must be hashable and comparable via the `==` operator since they are placed into a set([]) object. If the sets from G1 and G2 are the same, then the constructed function returns True.

**Parameters**

• `attr (string | list)` – The categorical edge attribute to compare, or a list of categorical edge attributes to compare.

• `default (value | list)` – The default value for the categorical edge attribute, or a list of default values for the categorical edge attributes.

**Returns** `match` – The customized, categorical `edge_match` function.

**Return type** `function`

**Examples**

```python
>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_multiedge_match('size', 1)
>>> nm = iso.categorical_multiedge_match(['color', 'size'], ['red', 2])
```

numerical_node_match
numerical_node_match (attr, default, rtol=1e-05, atol=1e-08)

Returns a comparison function for a numerical node attribute.

The value(s) of the attr(s) must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True.

**Parameters**

• `attr (string | list)` – The numerical node attribute to compare, or a list of numerical node attributes to compare.

• `default (value | list)` – The default value for the numerical node attribute, or a list of default values for the numerical node attributes.

• `rtol (float)` – The relative error tolerance.
• \texttt{atol} (\texttt{float}) – The absolute error tolerance.

\textbf{Returns} \texttt{match} – The customized, numerical \texttt{node}\texttt{match} function.

\textbf{Return type} \texttt{function}

\textbf{Examples}

\begin{verbatim}
>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_node_match('weight', 1.0)
>>> nm = iso.numerical_node_match(['weight', 'linewidth'], [.25, .5])
\end{verbatim}

\textbf{numerical\textunderscore edge\textunderscore match}

\texttt{numerical\textunderscore edge\textunderscore match} (\texttt{attr}, \texttt{default}, \texttt{rtol=1e-05}, \texttt{atol=1e-08})

Returns a comparison function for a numerical edge attribute.

The value(s) of the \texttt{attr(s)} must be numerical and sortable. If the sorted list of values from \texttt{G1} and \texttt{G2} are the same within some tolerance, then the constructed function returns \texttt{True}.

\textbf{Parameters}

• \texttt{attr} (\texttt{string} \texttt{\mid} \texttt{list}) – The numerical edge attribute to compare, or a list of numerical edge attributes to compare.

• \texttt{default} (\texttt{value} \texttt{\mid} \texttt{list}) – The default value for the numerical edge attribute, or a list of default values for the numerical edge attributes.

• \texttt{rtol} (\texttt{float}) – The relative error tolerance.

• \texttt{atol} (\texttt{float}) – The absolute error tolerance.

\textbf{Returns} \texttt{match} – The customized, numerical \texttt{edge}\texttt{match} function.

\textbf{Return type} \texttt{function}

\textbf{Examples}

\begin{verbatim}
>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_edge_match('weight', 1.0)
>>> nm = iso.numerical_edge_match(['weight', 'linewidth'], [.25, .5])
\end{verbatim}

\textbf{numerical\textunderscore multiedge\textunderscore match}

\texttt{numerical\textunderscore multiedge\textunderscore match} (\texttt{attr}, \texttt{default}, \texttt{rtol=1e-05}, \texttt{atol=1e-08})

Returns a comparison function for a numerical edge attribute.

The value(s) of the \texttt{attr(s)} must be numerical and sortable. If the sorted list of values from \texttt{G1} and \texttt{G2} are the same within some tolerance, then the constructed function returns \texttt{True}.

\textbf{Parameters}

• \texttt{attr} (\texttt{string} \texttt{\mid} \texttt{list}) – The numerical edge attribute to compare, or a list of numerical edge attributes to compare.

• \texttt{default} (\texttt{value} \texttt{\mid} \texttt{list}) – The default value for the numerical edge attribute, or a list of default values for the numerical edge attributes.

• \texttt{rtol} (\texttt{float}) – The relative error tolerance.
• **atol** (*float*) – The absolute error tolerance.

**Returns** *match* – The customized, numerical *edge_match* function.

**Return type** *function*

### Examples

```python
>>> import networkx.algorithms.isomorphism as iso

>>> nm = iso.numerical_multiedge_match('weight', 1.0)
>>> nm = iso.numerical_multiedge_match(['weight', 'linewidth'], [.25, .5])
```

**generic_node_match**

**generic_node_match** *(attr, default, op)*

Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True.

**Parameters**

- **attr** (*string | list*) – The node attribute to compare, or a list of node attributes to compare.
- **default** (*value | list*) – The default value for the node attribute, or a list of default values for the node attributes.
- **op** (*callable | list*) – The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute.

**Returns** *match* – The customized, generic *node_match* function.

**Return type** *function*

### Examples

```python
>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_node_match

>>> nm = generic_node_match('weight', 1.0, close)
>>> nm = generic_node_match('color', 'red', eq)
>>> nm = generic_node_match(['weight', 'color'], [1.0, 'red'], [close, eq])
```

**generic_edge_match**

**generic_edge_match** *(attr, default, op)*

Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True.

**Parameters**

- **attr** (*string | list*) – The edge attribute to compare, or a list of edge attributes to compare.
- **default** (*value | list*) – The default value for the edge attribute, or a list of default values for the edge attributes.
- **op** (*callable | list*) – The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute.

**Returns** *match* – The customized, generic *edge_match* function.

**Return type** *function*
Returns match – The customized, generic edge\_match function.

Return type function

Examples

```python
>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_edge_match

>>> nm = generic_edge_match('weight', 1.0, close)
>>> nm = generic_edge_match('color', 'red', eq)
>>> nm = generic_edge_match(['weight', 'color'], [1.0, 'red'], [close, eq])
```

generic\_multiedge\_match

generic\_multiedge\_match\ (attr, default, op)

Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True. Potentially, the constructed edge\_match function can be slow since it must verify that no isomorphism exists between the multiedges before it returns False.

Parameters

- **attr** (string | list) – The edge attribute to compare, or a list of node attributes to compare.
- **default** (value | list) – The default value for the edge attribute, or a list of default values for the edge attributes.
- **op** (callable | list) – The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute.

Returns match – The customized, generic edge\_match function.

Return type function

Examples

```python
>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_node_match

>>> nm = generic_node_match('weight', 1.0, close)
>>> nm = generic_node_match('color', 'red', eq)
>>> nm = generic_node_match(['weight', 'color'], [1.0, 'red'], [close, eq])
```

4.28 Link Analysis

4.28.1 PageRank

PageRank analysis of graph structure.
NetworkX Reference, Release 1.10

**pagerank**

\[ \text{pagerank}(G[, \alpha, \text{personalization}, \ldots]) \]

Return the PageRank of the nodes in the graph.

**pagerank_numpy**

\[ \text{pagerank_numpy}(G[, \alpha, \text{personalization}, \ldots]) \]

Return the PageRank of the nodes in the graph.

**pagerank_scipy**

\[ \text{pagerank_scipy}(G[, \alpha, \text{personalization}, \ldots]) \]

Return the PageRank of the nodes in the graph.

**google_matrix**

\[ \text{google_matrix}(G[, \alpha, \text{personalization}, \ldots]) \]

Return the Google matrix of the graph.

---

**pagerank**

\[ \text{pagerank}(G, \alpha=0.85, \text{personalization} = \text{None}, \text{max_iter} = 100, \text{tol} = 1e-06, \text{nstart} = \text{None}, \text{weight} = \text{weight'}, \text{dangling} = \text{None}) \]

Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph \( G \) based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages.

**Parameters**

- **\( G \) (graph)** – A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge.
- **\( \alpha \) (float, optional)** – Damping parameter for PageRank, default=0.85.
- **\( \text{personalization} \) (dict, optional)** – The “personalization vector” consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used.
- **\( \text{max_iter} \) (integer, optional)** – Maximum number of iterations in power method eigenvalue solver.
- **\( \text{tol} \) (float, optional)** – Error tolerance used to check convergence in power method solver.
- **\( \text{nstart} \) (dictionary, optional)** – Starting value of PageRank iteration for each node.
- **\( \text{weight} \) (key, optional)** – Edge data key to use as weight. If None weights are set to 1.
- **\( \text{dangling} \) (dict, optional)** – The outedges to be assigned to any “dangling” nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified). This must be selected to result in an irreducible transition matrix (see notes under google_matrix). It may be common to have the dangling dict to be the same as the personalization dict.

**Returns**

**pagerank** – Dictionary of nodes with PageRank as value

**Return type**

dictionary

---

**Examples**

```python
>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank(G, alpha=0.9)
```

**Notes**

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after \( \text{max_iter} \) iterations or an error tolerance of \( \text{number_of_nodes}(G) \times \text{tol} \) has been reached.

The PageRank algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs by converting each edge in the directed graph to two edges.

---

4.28. **Link Analysis** 297
See also:

\[ \text{pagerank\_numpy(), pagerank\_scipy(), google\_matrix()} \]

References

**pagerank\_numpy**

\[ \text{pagerank\_numpy}(G, \alpha=0.85, \text{personalization}=\text{None}, \text{weight}=\text{'weight'}, \text{dangling}=\text{None}) \]

Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages.

**Parameters**

- \( G \) (graph) – A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge.
- \( \alpha \) (float, optional) – Damping parameter for PageRank, default=0.85.
- \( \text{personalization} \) (dict, optional) – The “personalization vector” consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used.
- \( \text{weight} \) (key, optional) – Edge data key to use as weight. If None weights are set to 1.
- \( \text{dangling} \) (dict, optional) – The outedges to be assigned to any “dangling” nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified) This must be selected to result in an irreducible transition matrix (see notes under google\_matrix). It may be common to have the dangling dict to be the same as the personalization dict.

**Returns** pagerank – Dictionary of nodes with PageRank as value.

**Return type** dictionary

**Examples**

```python
>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank_numpy(G, alpha=0.9)
```

**Notes**

The eigenvector calculation uses NumPy’s interface to the LAPACK eigenvalue solvers. This will be the fastest and most accurate for small graphs.

This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be the sum of all edge weights between those nodes.

See also:

\[ \text{pagerank(), pagerank\_scipy(), google\_matrix()} \]
References

pagerank_scipy

`pagerank_scipy(G, alpha=0.85, personalization=None, max_iter=100, tol=1e-06, weight='weight', dangling=None)`

Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages.

**Parameters**

- `G (graph)` – A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge.
- `alpha (float, optional)` – Damping parameter for PageRank, default=0.85.
- `personalization (dict, optional)` – The “personalization vector” consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used.
- `max_iter (integer, optional)` – Maximum number of iterations in power method eigenvalue solver.
- `tol (float, optional)` – Error tolerance used to check convergence in power method solver.
- `weight (key, optional)` – Edge data key to use as weight. If None weights are set to 1.
- `dangling (dict, optional)` – The outedges to be assigned to any “dangling” nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified) This must be selected to result in an irreducible transition matrix (see notes under google_matrix). It may be common to have the dangling dict to be the same as the personalization dict.

**Returns**

`pagerank` – Dictionary of nodes with PageRank as value

**Return type**

dictionary

**Examples**

```python
>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank_scipy(G, alpha=0.9)
```

**Notes**

The eigenvector calculation uses power iteration with a SciPy sparse matrix representation.

This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be the sum of all edge weights between those nodes.

**See also:**

`pagerank()`, `pagerank_numpy()`, `google_matrix()`
References

google_matrix

google_matrix(G, alpha=0.85, personalization=None, nodelist=None, weight='weight', dangling=None)

Return the Google matrix of the graph.

Parameters

- **G (graph)** – A NetworkX graph. Undirected graphs will be converted to a directed graph with two directed edges for each undirected edge.
- **alpha (float)** – The damping factor.
- **personalization (dict, optional)** – The “personalization vector” consisting of a dictionary with a key for every graph node and nonzero personalization value for each node. By default, a uniform distribution is used.
- **nodelist (list, optional)** – The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
- **weight (key, optional)** – Edge data key to use as weight. If None weights are set to 1.
- **dangling (dict, optional)** – The outedges to be assigned to any “dangling” nodes, i.e., nodes without any outedges. The dict key is the node the outedge points to and the dict value is the weight of that outedge. By default, dangling nodes are given outedges according to the personalization vector (uniform if not specified). This must be selected to result in an irreducible transition matrix (see notes below). It may be common to have the dangling dict to be the same as the personalization dict.

Returns **A** – Google matrix of the graph

Return type NumPy matrix

Notes

The matrix returned represents the transition matrix that describes the Markov chain used in PageRank. For PageRank to converge to a unique solution (i.e., a unique stationary distribution in a Markov chain), the transition matrix must be irreducible. In other words, it must be that there exists a path between every pair of nodes in the graph, or else there is the potential of “rank sinks.”

This implementation works with Multi(Di)Graphs. For multigraphs the weight between two nodes is set to be the sum of all edge weights between those nodes.

See also:

pagerank(), pagerank_numpy(), pagerank_scipy()
Table 4.76 – continued from previous page

| authority_matrix(G[, nodelist]) | Return the HITS authority matrix. |

**Table 4.76 – continued from previous page**

**authority_matrix**

(G[, nodelist]) Return the HITS authority matrix.

**hits**

hits(G, max_iter=100, tol=1e-08, nstart=None, normalized=True)

Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.

- **Parameters**
  - G (graph) – A NetworkX graph
  - max_iter (integer, optional) – Maximum number of iterations in power method.
  - tol (float, optional) – Error tolerance used to check convergence in power method iteration.
  - nstart (dictionary, optional) – Starting value of each node for power method iteration.
  - normalized (bool (default=True)) – Normalize results by the sum of all of the values.

- **Returns**
  - (hubs,authorities) – Two dictionaries keyed by node containing the hub and authority values.

**Return type** two-tuple of dictionaries

**Examples**

```python
>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)
```

**Notes**

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.

The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs.

**References**

**hits_numpy**

hits_numpy(G, normalized=True)

Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.

- **Parameters**
  - G [graph] A NetworkX graph
  - normalized [bool (default=True)] Normalize results by the sum of all of the values.

- **Returns**
  - (hubs,authorities) – Two dictionaries keyed by node containing the hub and authority values.
Return type  two-tuple of dictionaries

Examples

```python
>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)
```

Notes

The eigenvector calculation uses NumPy’s interface to LAPACK.

The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs.

References

**hits_scipy**

**hits_scipy** *(G, max_iter=100, tol=1e-06, normalized=True)*

Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.

G  [graph]  A NetworkX graph

max_iter  [integer, optional]  Maximum number of iterations in power method.

tol  [float, optional]  Error tolerance used to check convergence in power method iteration.

nstart  [dictionary, optional]  Starting value of each node for power method iteration.

normalized  [bool (default=True)]  Normalize results by the sum of all of the values.

Returns *(hubs,authorities)* – Two dictionaries keyed by node containing the hub and authority values.

Return type  two-tuple of dictionaries

Examples

```python
>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)
```

Notes

This implementation uses SciPy sparse matrices.

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.

The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs.
References

hub_matrix

hub_matrix(G, nodelist=None)
Return the HITS hub matrix.

authority_matrix

authority_matrix(G, nodelist=None)
Return the HITS authority matrix.

4.29 Link Prediction

Link prediction algorithms.

<table>
<thead>
<tr>
<th>function</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>resource_allocation_index(G[, ebunch])</td>
<td>Compute the resource allocation index of all node pairs in ebunch.</td>
</tr>
<tr>
<td>jaccard_coefficient(G[, ebunch])</td>
<td>Compute the Jaccard coefficient of all node pairs in ebunch.</td>
</tr>
<tr>
<td>adamic_adar_index(G[, ebunch])</td>
<td>Compute the Adamic-Adar index of all node pairs in ebunch.</td>
</tr>
<tr>
<td>preferential_attachment(G[, ebunch])</td>
<td>Compute the preferential attachment score of all node pairs in ebunch.</td>
</tr>
<tr>
<td>cn_soundarajan_hopcroft(G[, ebunch, community])</td>
<td>Count the number of common neighbors of all node pairs in ebunch using community information.</td>
</tr>
<tr>
<td>ra_index_soundarajan_hopcroft(G[, ebunch, ...])</td>
<td>Compute the resource allocation index of all node pairs in ebunch using community information.</td>
</tr>
<tr>
<td>within_inter_cluster(G[, ebunch, delta, ...])</td>
<td>Compute the ratio of within- and inter-cluster common neighbors of all node pairs in ebunch.</td>
</tr>
</tbody>
</table>

4.29.1 resource_allocation_index

resource_allocation_index(G, ebunch=None)
Compute the resource allocation index of all node pairs in ebunch.

Resource allocation index of \(u\) and \(v\) is defined as

\[
\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|\Gamma(w)|}
\]

where \(\Gamma(u)\) denotes the set of neighbors of \(u\).

Parameters

- **G** (graph) – A NetworkX undirected graph.
- **ebunch** (iterable of node pairs, optional (default = None)) – Resource allocation index will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples \((u, v)\) where \(u\) and \(v\) are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None.

Returns piter – An iterator of 3-tuples in the form \((u, v, p)\) where \((u, v)\) is a pair of nodes and \(p\) is their resource allocation index.

Return type iterator

4.29. Link Prediction 303
Examples

```python
>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.resource_allocation_index(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
... '(0, 1) -> 0.75000000'
... '(2, 3) -> 0.75000000'
```

References

4.29.2 jaccard_coefficient

**jaccard_coefficient** *(G, ebunch=None)*

Compute the Jaccard coefficient of all node pairs in ebunch.

Jaccard coefficient of nodes *u* and *v* is defined as

\[
\frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}
\]

where \(\Gamma(u)\) denotes the set of neighbors of *u*.

**Parameters**

- *G* *(graph)* – A NetworkX undirected graph.
- *ebunch* *(iterable of node pairs, optional (default = None))* – Jaccard coefficient will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None.

**Returns** *piter* – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their Jaccard coefficient.

**Return type** iterator

Examples

```python
>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.jaccard_coefficient(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
... '(0, 1) -> 0.60000000'
... '(2, 3) -> 0.60000000'
```

References

4.29.3 adamic_adar_index

**adamic_adar_index** *(G, ebunch=None)*

Compute the Adamic-Adar index of all node pairs in ebunch.
Adamic-Adar index of \( u \) and \( v \) is defined as
\[
\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|}
\]
where \( \Gamma(u) \) denotes the set of neighbors of \( u \).

Parameters
- \( G \) (graph) – NetworkX undirected graph.
- \( ebunch \) (iterable of node pairs, optional (default = None)) – Adamic-Adar index will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples \((u, v)\) where \( u \) and \( v \) are nodes in the graph. If \( ebunch \) is None then all non-existent edges in the graph will be used. Default value: None.

Returns piter – An iterator of 3-tuples in the form \((u, v, p)\) where \((u, v)\) is a pair of nodes and \( p \) is their Adamic-Adar index.

Return type iterator

Examples

```python
>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.adamic_adar_index(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... print(f'({u}, {v}) -> {p:.8f}')
... # Output: (0, 1) -> 2.16404256
... # (2, 3) -> 2.16404256
```

References

4.29.4 preferential_attachment

preferential_attachment \((G, ebunch=None)\)
Compute the preferential attachment score of all node pairs in \( ebunch \).

Preferential attachment score of \( u \) and \( v \) is defined as
\[
|\Gamma(u)||\Gamma(v)|
\]
where \( \Gamma(u) \) denotes the set of neighbors of \( u \).

Parameters
- \( G \) (graph) – NetworkX undirected graph.
- \( ebunch \) (iterable of node pairs, optional (default = None)) – Preferential attachment score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples \((u, v)\) where \( u \) and \( v \) are nodes in the graph. If \( ebunch \) is None then all non-existent edges in the graph will be used. Default value: None.

Returns piter – An iterator of 3-tuples in the form \((u, v, p)\) where \((u, v)\) is a pair of nodes and \( p \) is their preferential attachment score.

Return type iterator
Examples

```python
>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %d' % (u, v, p)
... '0, 1) -> 16'
'2, 3) -> 16'
```

References

4.29.5 cn_soundarajan_hopcroft

`cn_soundarajan_hopcroft(G, ebunch=None, community='community')`

Count the number of common neighbors of all node pairs in `ebunch` using community information.

For two nodes u and v, this function computes the number of common neighbors and bonus one for each common neighbor belonging to the same community as u and v. Mathematically,

\[ |\Gamma(u) \cap \Gamma(v)| + \sum_{w \in \Gamma(u) \cap \Gamma(v)} f(w) \]

where \( f(w) \) equals 1 if \( w \) belongs to the same community as \( u \) and \( v \) or 0 otherwise and \( \Gamma(u) \) denotes the set of neighbors of \( u \).

Parameters

- **G (graph)** – A NetworkX undirected graph.
- **ebunch (iterable of node pairs, optional (default = None))** – The score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples (u, v) where u and v are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None.
- **community (string, optional (default = ‘community’))** – Nodes attribute name containing the community information. \( G[u][\text{community}] \) identifies which community \( u \) belongs to. Each node belongs to at most one community. Default value: ‘community’.

Returns `piter` – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a pair of nodes and p is their score.

Return type iterator

Examples

```python
>>> import networkx as nx
>>> G = nx.path_graph(3)
>>> G.node[0]['community'] = 0
>>> G.node[1]['community'] = 0
>>> G.node[2]['community'] = 0
>>> preds = nx.cn_soundarajan_hopcroft(G, [(0, 2)])
>>> for u, v, p in preds:
... '(%d, %d) -> %d' % (u, v, p)
... '(0, 2) -> 16'
```
Compute the resource allocation index of all node pairs in ebunch using community information.

For two nodes $u$ and $v$, this function computes the resource allocation index considering only common neighbors belonging to the same community as $u$ and $v$. Mathematically,

$$\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{f(w)}{|\Gamma(w)|}$$

where $f(w)$ equals 1 if $w$ belongs to the same community as $u$ and $v$ or 0 otherwise and $\Gamma(u)$ denotes the set of neighbors of $u$.

**Parameters**

- `G` *(graph)* – A NetworkX undirected graph.
- `ebunch` *(iterable of node pairs, optional (default = None))* – The score will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples $(u, v)$ where $u$ and $v$ are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None.
- `community` *(string, optional (default = 'community'))* – Nodes attribute name containing the community information. $G[u][\text{community}]$ identifies which community $u$ belongs to. Each node belongs to at most one community. Default value: ‘community’.

**Returns**

- `piter` – An iterator of 3-tuples in the form $(u, v, p)$ where $(u, v)$ is a pair of nodes and $p$ is their score.

**Return type** *iterator*

**Examples**

```python
>>> import networkx as nx
>>> G = nx.Graph()
>>> G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
>>> G.node[0]['community'] = 0
>>> G.node[1]['community'] = 0
>>> G.node[2]['community'] = 1
>>> G.node[3]['community'] = 0
>>> preds = nx.ra_index_soundarajan_hopcroft(G, [(0, 3)])
>>> for u, v, p in preds:
... print('(%d, %d) -> %.8f' % (u, v, p))
... '(%d, %d) -> 0.50000000'
```
References

4.29.7 within_inter_cluster

within_inter_cluster (G, ebunch=None, delta=0.001, community='community')

Compute the ratio of within- and inter-cluster common neighbors of all node pairs in ebunch.

For two nodes \( u \) and \( v \), if a common neighbor \( w \) belongs to the same community as them, \( w \) is considered as within-cluster common neighbor of \( u \) and \( v \). Otherwise, it is considered as inter-cluster common neighbor of \( u \) and \( v \). The ratio between the size of the set of within- and inter-cluster common neighbors is defined as the WIC measure. ⁹⁷

Parameters

- **G (graph)** – A NetworkX undirected graph.
- **ebunch (iterable of node pairs, optional (default = None))** – The WIC measure will be computed for each pair of nodes given in the iterable. The pairs must be given as 2-tuples \((u, v)\) where \( u \) and \( v \) are nodes in the graph. If ebunch is None then all non-existent edges in the graph will be used. Default value: None.
- **delta (float, optional (default = 0.001))** – Value to prevent division by zero in case there is no inter-cluster common neighbor between two nodes. See ¹ for details. Default value: 0.001.
- **community (string, optional (default = 'community'))** – Nodes attribute name containing the community information. \( G[u]['community'] \) identifies which community \( u \) belongs to. Each node belongs to at most one community. Default value: ‘community’.

Returns piter – An iterator of 3-tuples in the form \((u, v, p)\) where \((u, v)\) is a pair of nodes and \( p \) is their WIC measure.

Return type iterator

Examples

```python
>>> import networkx as nx
>>> G = nx.Graph()
>>> G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4)])
>>> G.node[0]['community'] = 0
>>> G.node[1]['community'] = 1
>>> G.node[2]['community'] = 0
>>> G.node[3]['community'] = 0
>>> G.node[4]['community'] = 0
>>> preds = nx.within_inter_cluster(G, [(0, 4)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
... '(0, 4) -> 1.99800200'
>>> preds = nx.within_inter_cluster(G, [(0, 4)], delta=0.5)
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
... '(0, 4) -> 1.33333333'
```

⁹⁷ Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes. Link prediction in complex networks based on cluster information. In Proceedings of the 21st Brazilian conference on Advances in Artificial Intelligence (SBIA’12) http://dx.doi.org/10.1007/978-3-642-34459-6_10
4.30.1 matching

**maximal_matching(G)**
Find a maximal cardinality matching in the graph.

A matching is a subset of edges in which no node occurs more than once. The cardinality of a matching is the number of matched edges.

**Parameters**
- **G** (*NetworkX graph*) – Undirected graph

**Returns**
- **matching** – A maximal matching of the graph.

**Return type**
- set

**Notes**

The algorithm greedily selects a maximal matching M of the graph G (i.e. no superset of M exists). It runs in \(O(|E|)\) time.

4.30.3 max_weight_matching

**max_weight_matching(G, maxcardinality=False)**
Compute a maximum-weighted matching of G.

A matching is a subset of edges in which no node occurs more than once. The cardinality of a matching is the number of matched edges. The weight of a matching is the sum of the weights of its edges.

**Parameters**
- **G** (*NetworkX graph*) – Undirected graph
- **maxcardinality** (*bool, optional*) – If maxcardinality is True, compute the maximum-cardinality matching with maximum weight among all maximum-cardinality matchings.

**Returns**
- **mate** – The matching is returned as a dictionary, mate, such that mate[v] == w if node v is matched to node w. Unmatched nodes do not occur as a key in mate.

**Return type**
dictionary

If G has edges with ‘weight’ attribute the edge data are used as weight values else the weights are assumed to be 1.

This function takes time \(O(n^3)\).

If all edge weights are integers, the algorithm uses only integer computations. If floating point weights are used, the algorithm could return a slightly suboptimal matching due to numeric precision errors.
This method is based on the “blossom” method for finding augmenting paths and the “primal-dual” method for finding a matching of maximum weight, both methods invented by Jack Edmonds.

Bipartite graphs can also be matched using the functions present in `networkx.algorithms.bipartite.matching`.

References

4.31 Minors

Provides functions for computing minors of a graph.

- `contracted_edge(G, edge[, self_loops])` Returns the graph that results from contracting the specified edge.
- `contracted_nodes(G, u, v[, self_loops])` Returns the graph that results from contracting `u` and `v`.
- `identified_nodes(G, u, v[, self_loops])` Returns the graph that results from contracting `u` and `v`.
- `quotient_graph(G, node_relation[, ...])` Returns the quotient graph of `G` under the specified equivalence relation on nodes.

4.31.1 contracted_edge

`contracted_edge(G, edge, self_loops=True)`
Returns the graph that results from contracting the specified edge.

Edge contraction identifies the two endpoints of the edge as a single node incident to any edge that was incident to the original two nodes. A graph that results from edge contraction is called a minor of the original graph.

Parameters

- `G (NetworkX graph)` – The graph whose edge will be contracted.
- `edge (tuple)` – Must be a pair of nodes in `G`.
- `self_loops (Boolean)` – If this is True, any edges (including `edge`) joining the endpoints of `edge` in `G` become self-loops on the new node in the returned graph.

Returns A new graph object of the same type as `G` (leaving `G` unmodified) with endpoints of `edge` identified in a single node. The right node of `edge` will be merged into the left one, so only the left one will appear in the returned graph.

Return type Networkx graph

Raises ValueError – If `edge` is not an edge in `G`.

Examples

Attempting to contract two nonadjacent nodes yields an error:

```python
>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> nx.contracted_edge(G, (1, 3))
Traceback (most recent call last):
 ... ValueError: Edge (1, 3) does not exist in graph G; cannot contract it
```
Contracting two adjacent nodes in the cycle graph on \( n \) nodes yields the cycle graph on \( n - 1 \) nodes:

```python
>>> import networkx as nx
>>> C5 = nx.cycle_graph(5)
>>> C4 = nx.cycle_graph(4)
>>> M = nx.contracted_edge(C5, (0, 1), self_loops=False)
>>> nx.is_isomorphic(M, C4)
True
```

See also:

contracted_nodes(), quotient_graph()

### 4.31.2 contracted_nodes

**contracted_nodes** (*G*, *u*, *v*, *self_loops=True*)

Returns the graph that results from contracting *u* and *v*.

Node contraction identifies the two nodes as a single node incident to any edge that was incident to the original two nodes.

**Parameters**

- *G* (*NetworkX graph*) – The graph whose nodes will be contracted.
- *v* (*u*) – Must be nodes in *G*.
- *self_loops* (*Boolean*) – If this is True, any edges joining *u* and *v* in *G* become self-loops on the new node in the returned graph.

**Returns** A new graph object of the same type as *G* (leaving *G* unmodified) with *u* and *v* identified in a single node. The right node *v* will be merged into the node *u*, so only *u* will appear in the returned graph.

**Return type** *NetworkX graph*

**Examples**

Contracting two nonadjacent nodes of the cycle graph on four nodes \( C_4 \) yields the path graph (ignoring parallel edges):

```python
>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> M = nx.contracted_nodes(G, 1, 3)
>>> P3 = nx.path_graph(3)
>>> nx.is_isomorphic(M, P3)
True
```

See also:

contracted_edge(), quotient_graph()

**Notes**

This function is also available as identified_nodes.
### 4.31.3 identified_nodes

**identified_nodes** *(G, u, v, self_loops=True)*

Returns the graph that results from contracting `u` and `v`.

Node contraction identifies the two nodes as a single node incident to any edge that was incident to the original two nodes.

**Parameters**

- `G` *(NetworkX graph)* – The graph whose nodes will be contracted.
- `u` *(v,)* – Must be nodes in `G`.
- `self_loops` *(Boolean)* – If this is `True`, any edges joining `u` and `v` in `G` become self-loops on the new node in the returned graph.

**Returns** A new graph object of the same type as `G` (leaving `G` unmodified) with `u` and `v` identified in a single node. The right node `v` will be merged into the node `u`, so only `u` will appear in the returned graph.

**Return type** Networkx graph

**Examples**

Contracting two nonadjacent nodes of the cycle graph on four nodes $C_4$ yields the path graph (ignoring parallel edges):

```python
>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> M = nx.contracted_nodes(G, 1, 3)
>>> P3 = nx.path_graph(3)
>>> nx.is_isomorphic(M, P3)
True
```

**See also:**

`contracted_edge()`, `quotient_graph()`

**Notes**

This function is also available as `identified_nodes`.

### 4.31.4 quotient_graph

**quotient_graph** *(G, node_relation, edge_relation=None, create_using=None)*

Returns the quotient graph of `G` under the specified equivalence relation on nodes.

**Parameters**

- `G` *(NetworkX graph)* – The graph for which to return the quotient graph with the specified node relation.
- `node_relation` *(Boolean function with two arguments)* – This function must represent an equivalence relation on the nodes of `G`. It must take two arguments `u` and `v` and return `True` exactly when `u` and `v` are in the same equivalence class. The equivalence classes form the nodes in the returned graph.
• **edge_relation** (*Boolean function with two arguments*) – This function must represent an edge relation on the *blocks* of $G$ in the partition induced by *node_relation*. It must take two arguments, $B$ and $C$, each one a set of nodes, and return True exactly when there should be an edge joining block $B$ to block $C$ in the returned graph.

If *edge_relation* is not specified, it is assumed to be the following relation. Block $B$ is related to block $C$ if and only if some node in $B$ is adjacent to some node in $C$, according to the edge set of $G$.

• **create_using** (*NetworkX graph*) – If specified, this must be an instance of a NetworkX graph class. The nodes and edges of the quotient graph will be added to this graph and returned. If not specified, the returned graph will have the same type as the input graph.

**Returns** The quotient graph of $G$ under the equivalence relation specified by *node_relation*.

**Return type** NetworkX graph

**Examples**

The quotient graph of the complete bipartite graph under the “same neighbors” equivalence relation is $K_2$. Under this relation, two nodes are equivalent if they are not adjacent but have the same neighbor set:

```python
>>> import networkx as nx
>>> G = nx.complete_bipartite_graph(2, 3)
>>> same_neighbors = lambda u, v: (u not in G[v] and v not in G[u] and G[u] == G[v])
>>> Q = nx.quotient_graph(G, same_neighbors)
>>> K2 = nx.complete_graph(2)
>>> nx.is_isomorphic(Q, K2)
True
```

The quotient graph of a directed graph under the “same strongly connected component” equivalence relation is the condensation of the graph (see *condensation()*). This example comes from the Wikipedia article ‘Strongly connected component’:

```python
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> edges = ['ab', 'be', 'bf', 'bc', 'cg', 'cd', 'dh', 'ea', 'ef', 'fg', 'gf', 'hd', 'hf']
>>> G.add_edges_from(tuple(x) for x in edges)
>>> components = list(nx.strongly_connected_components(G))
>>> sorted(sorted(component) for component in components)
[['a', 'b', 'e'], ['c', 'd', 'h'], ['f', 'g']]
>>> C = nx.condensation(G, components)
>>> component_of = C.graph['mapping']
>>> same_component = lambda u, v: component_of[u] == component_of[v]
>>> Q = nx.quotient_graph(G, same_component)
>>> nx.is_isomorphic(C, Q)
True
```

Node identification can be represented as the quotient of a graph under the equivalence relation that places the two nodes in one block and each other node in its own singleton block:

```python
>>> import networkx as nx
>>> K24 = nx.complete_bipartite_graph(2, 4)
>>> K34 = nx.complete_bipartite_graph(3, 4)
>>> C = nx.contracted_nodes(K34, 1, 2)
>>> nodes = {1, 2}
```
>>> is_contracted = lambda u, v: u in nodes and v in nodes
>>> Q = nx.quotient_graph(K34, is_contracted)
>>> nx.is_isomorphic(Q, C)
True
>>> nx.is_isomorphic(Q, K24)
True

4.32 Maximal independent set

Algorithm to find a maximal (not maximum) independent set.

maximal_independent_set(G[, nodes]) Return a random maximal independent set guaranteed to contain a given set of nodes.

4.32.1 maximal_independent_set

maximal_independent_set(G, nodes=None)
Return a random maximal independent set guaranteed to contain a given set of nodes.

An independent set is a set of nodes such that the subgraph of G induced by these nodes contains no edges. A maximal independent set is an independent set such that it is not possible to add a new node and still get an independent set.

Parameters

- G (NetworkX graph) –
- nodes (list or iterable) – Nodes that must be part of the independent set. This set of nodes must be independent.

Returns indep_nodes – List of nodes that are part of a maximal independent set.

Return type list

Raises NetworkXUnfeasible – If the nodes in the provided list are not part of the graph or do not form an independent set, an exception is raised.

Examples

>>> G = nx.path_graph(5)
>>> nx.maximal_independent_set(G)
[4, 0, 2]
>>> nx.maximal_independent_set(G, [1])
[1, 3]

This algorithm does not solve the maximum independent set problem.

4.33 Minimum Spanning Tree

Computes minimum spanning tree of a weighted graph.

minimum_spanning_tree(G[, weight]) Return a minimum spanning tree or forest of an undirected weighted graph.
minimum_spanning_edges(G[, weight, data]) Generate edges in a minimum spanning forest of an undirected weighted graph.
### 4.33.1 minimum_spanning_tree

**minimum_spanning_tree** *(G, weight='weight')*

Return a minimum spanning tree or forest of an undirected weighted graph.

A minimum spanning tree is a subgraph of the graph (a tree) with the minimum sum of edge weights.

If the graph is not connected a spanning forest is constructed. A spanning forest is a union of the spanning trees for each connected component of the graph.

**Parameters**
- **G** *(NetworkX Graph)* –
- **weight** *(string)* – Edge data key to use for weight (default ‘weight’).

**Returns**
- **G** – A minimum spanning tree or forest.

**Return type**
- NetworkX Graph

**Examples**

```python
>>> G = nx.cycle_graph(4)
>>> G.add_edge(0, 3, weight=2) # assign weight 2 to edge 0-3
>>> T = nx.minimum_spanning_tree(G)
>>> print(sorted(T.edges(data=True)))
[(0, 1, {}), (1, 2, {}), (2, 3, {})]
```

**Notes**

Uses Kruskal’s algorithm.

If the graph edges do not have a weight attribute a default weight of 1 will be used.

### 4.33.2 minimum_spanning_edges

**minimum_spanning_edges** *(G, weight='weight', data=True)*

Generate edges in a minimum spanning forest of an undirected weighted graph.

A minimum spanning tree is a subgraph of the graph (a tree) with the minimum sum of edge weights. A spanning forest is a union of the spanning trees for each connected component of the graph.

**Parameters**
- **G** *(NetworkX Graph)* –
- **weight** *(string)* – Edge data key to use for weight (default ‘weight’).
- **data** *(bool, optional)* – If True yield the edge data along with the edge.

**Returns**
- **edges** – A generator that produces edges in the minimum spanning tree. The edges are three-tuples *(u,v,w)* where *w* is the weight.

**Return type**
- iterator
Examples

```python
>>> G=nx.cycle_graph(4)
>>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3
>>> mst=nx.minimum_spanning_edges(G,data=False) # a generator of MST edges
>>> edgelist=list(mst) # make a list of the edges
>>> print(sorted(edgelist))
[(0, 1), (1, 2), (2, 3)]
```

Notes

Uses Kruskal's algorithm.

If the graph edges do not have a weight attribute a default weight of 1 will be used.

Modified code from David Eppstein, April 2006 http://www.ics.uci.edu/~eppstein/PADS/

4.34 Operators

Unary operations on graphs

```python
complement(G[, name]) Return the graph complement of G.
reverse(G[, copy]) Return the reverse directed graph of G.
```

4.34.1 complement

complement (G, name=None)

Return the graph complement of G.

Parameters

- **G (graph)** – A NetworkX graph
- **name (string)** – Specify name for new graph

Returns

- **GC (A new graph.)**
- **Notes**
- **——
  - Note that complement() does not create self-loops and also
does not produce parallel edges for MultiGraphs.
- **Graph, node, and edge data are not propagated to the new graph.**

4.34.2 reverse

reverse (G, copy=True)

Return the reverse directed graph of G.

Parameters
• **G (directed graph)** – A NetworkX directed graph

• **copy (bool)** – If True, then a new graph is returned. If False, then the graph is reversed in place.

Returns **H** – The reversed G.

Return type **directed graph**

Operations on graphs including union, intersection, difference.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>compose(G, H[, name])</code></td>
<td>Return a new graph of G composed with H.</td>
</tr>
<tr>
<td><code>union(G, H[, rename, name])</code></td>
<td>Return the union of graphs G and H.</td>
</tr>
<tr>
<td><code>disjoint_union(G, H)</code></td>
<td>Return the disjoint union of graphs G and H.</td>
</tr>
<tr>
<td><code>intersection(G, H)</code></td>
<td>Return a new graph that contains only the edges that exist in both G and H.</td>
</tr>
<tr>
<td><code>difference(G, H)</code></td>
<td>Return a new graph that contains the edges that exist in G but not in H.</td>
</tr>
<tr>
<td><code>symmetric_difference(G, H)</code></td>
<td>Return new graph with edges that exist in either G or H but not both.</td>
</tr>
</tbody>
</table>

### 4.34.3 compose

**compose**(G, H, name=None)

Return a new graph of G composed with H.

Composition is the simple union of the node sets and edge sets. The node sets of G and H do not need to be disjoint.

Parameters

- **G, H (graph)** – A NetworkX graph

- **name (string)** – Specify name for new graph

Returns **C**

Return type **A new graph with the same type as G**

Notes

It is recommended that G and H be either both directed or both undirected. Attributes from H take precedent over attributes from G.

### 4.34.4 union

**union**(G, H, rename=(None, None), name=None)

Return the union of graphs G and H.

Graphs G and H must be disjoint, otherwise an exception is raised.

Parameters

- **G, H (graph)** – A NetworkX graph

- **create_using (NetworkX graph)** – Use specified graph for result. Otherwise

- **rename (bool, default=(None, None))** – Node names of G and H can be changed by specifying the tuple rename=('G-','H-') (for example). Node “u” in G is then renamed “G-u” and “v” in H is renamed “H-v”.

- **name (string)** – Specify the name for the union graph

---

4.34. Operators 317
Returns U

Return type A union graph with the same type as G.

Notes

To force a disjoint union with node relabeling, use disjoint_union(G,H) or convert_node_labels_to_integers(). Graph, edge, and node attributes are propagated from G and H to the union graph. If a graph attribute is present in both G and H the value from H is used.

See also:

disjoint_union()

4.34.5 disjoint_union

disjoint_union(G,H)

Return the disjoint union of graphs G and H.

This algorithm forces distinct integer node labels.

Parameters G, H (graph) – A NetworkX graph

Returns U

Return type A union graph with the same type as G.

Notes

A new graph is created, of the same class as G. It is recommended that G and H be either both directed or both undirected.

The nodes of G are relabeled 0 to len(G)-1, and the nodes of H are relabeled len(G) to len(G)+len(H)-1. Graph, edge, and node attributes are propagated from G and H to the union graph. If a graph attribute is present in both G and H the value from H is used.

4.34.6 intersection

intersection(G, H)

Return a new graph that contains only the edges that exist in both G and H.

The node sets of H and G must be the same.

Parameters G, H (graph) – A NetworkX graph. G and H must have the same node sets.

Returns GH

Return type A new graph with the same type as G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new graph. If you want a new graph of the intersection of G and H with the attributes (including edge data) from G use remove_nodes_from() as follows
4.34.7 difference

difference \((G, H)\)

Return a new graph that contains the edges that exist in \(G\) but not in \(H\).

The node sets of \(H\) and \(G\) must be the same.

**Parameters** 
- \(G, H\) \((graph)\) – A NetworkX graph. \(G\) and \(H\) must have the same node sets.

**Returns** 
- \(D\)

**Return type** 
A new graph with the same type as \(G\).

**Notes**

Attributes from the graph, nodes, and edges are not copied to the new graph. If you want a new graph of the difference of \(G\) and \(H\) with with the attributes (including edge data) from \(G\) use remove_nodes_from() as follows:

```python
>>> G = nx.path_graph(3)
>>> H = nx.path_graph(5)
>>> R = G.copy()
>>> R.remove_nodes_from(n for n in G if n not in H)
```

4.34.8 symmetric_difference

symmetric_difference \((G, H)\)

Return new graph with edges that exist in either \(G\) or \(H\) but not both.

The node sets of \(H\) and \(G\) must be the same.

**Parameters** 
- \(G, H\) \((graph)\) – A NetworkX graph. \(G\) and \(H\) must have the same node sets.

**Returns** 
- \(D\)

**Return type** 
A new graph with the same type as \(G\).

**Notes**

Attributes from the graph, nodes, and edges are not copied to the new graph.

Operations on many graphs.

- `compose_all(graphs[, name])` Return the composition of all graphs.
- `union_all(graphs[, rename, name])` Return the union of all graphs.
- `disjoint_union_all(graphs)` Return the disjoint union of all graphs.
- `intersection_all(graphs)` Return a new graph that contains only the edges that exist in all graphs.
4.34.9 compose_all

**compose_all** (*graphs*, *name=None*)

Return the composition of all graphs.

Composition is the simple union of the node sets and edge sets. The node sets of the supplied graphs need not be disjoint.

**Parameters**

- *graphs* (*list*) – List of NetworkX graphs
- *name* (*string*) – Specify name for new graph

**Returns**

A graph with the same type as the first graph in list

**Notes**

It is recommended that the supplied graphs be either all directed or all undirected.

Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used.

4.34.10 union_all

**union_all** (*graphs*, *rename=(None, None)*, *name=None*)

Return the union of all graphs.

The graphs must be disjoint, otherwise an exception is raised.

**Parameters**

- *graphs* (*list of graphs*) – List of NetworkX graphs
- *rename* (*bool , default=(None, None)) – Node names of G and H can be changed by specifying the tuple rename=('G-','H-') (for example). Node “u” in G is then renamed “G-u” and “v” in H is renamed “H-v”.
- *name* (*string*) – Specify the name for the union graph

**Returns**

A graph with the same type as the first graph in list

**Notes**

To force a disjoint union with node relabeling, use disjoint_union_all(G,H) or convert_node_labels_to_integers().

Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used.

**See also:**

union(), disjoint_union_all()
### 4.34.11 disjoint_union_all

**disjoint_union_all** (graphs)

Return the disjoint union of all graphs.

This operation forces distinct integer node labels starting with 0 for the first graph in the list and numbering consecutively.

**Parameters**

- **graphs** (list) – List of NetworkX graphs

**Returns**

- **U**

**Return type**

A graph with the same type as the first graph in list

**Notes**

It is recommended that the graphs be either all directed or all undirected.

Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used.

### 4.34.12 intersection_all

**intersection_all** (graphs)

Return a new graph that contains only the edges that exist in all graphs.

All supplied graphs must have the same node set.

**Parameters**

- **graphs_list** (list) – List of NetworkX graphs

**Returns**

- **R**

**Return type**

A new graph with the same type as the first graph in list

**Notes**

Attributes from the graph, nodes, and edges are not copied to the new graph.

Graph products.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>cartesian_product</strong> (G, H)</td>
<td>Return the Cartesian product of G and H.</td>
</tr>
<tr>
<td><strong>lexicographic_product</strong> (G, H)</td>
<td>Return the lexicographic product of G and H.</td>
</tr>
<tr>
<td><strong>strong_product</strong> (G, H)</td>
<td>Return the strong product of G and H.</td>
</tr>
<tr>
<td><strong>tensor_product</strong> (G, H)</td>
<td>Return the tensor product of G and H.</td>
</tr>
<tr>
<td><strong>power</strong> (G, k)</td>
<td>Returns the specified power of a graph.</td>
</tr>
</tbody>
</table>

### 4.34.13 cartesian_product

**cartesian_product** (G, H)

Return the Cartesian product of G and H.

The Cartesian product P of the graphs G and H has a node set that is the Cartesian product of the node sets, \( V(P) = V(G) \times V(H) \). P has an edge \((u,v),(x,y))\) if and only if either \(u\) is equal to \(x\) and \(v\ & y\) are adjacent in \(H\) or if \(v\) is equal to \(y\) and \(u\ & x\) are adjacent in \(G\).

**Parameters**

- **H** (G) – NetworkX graphs.
Returns P – The Cartesian product of G and H. P will be a multi-graph if either G or H is a multi-graph. Will be a directed if G and H are directed, and undirected if G and H are undirected.

Return type NetworkX graph

Raises NetworkXError – If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.

Examples

```python
>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.cartesian_product(G,H)
>>> P.nodes()
[(0, 'a')]
```

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

4.34.14 lexicographic_product

**lexicographic_product** *(G, H)*

Return the lexicographic product of G and H.

The lexicographical product P of the graphs G and H has a node set that is the Cartesian product of the node sets, $V(P)=V(G) \times V(H)$. P has an edge ((u,v),(x,y)) if and only if (u,v) is an edge in G or u==v and (x,y) is an edge in H.

Parameters H (G.) – Networkx graphs.

Returns P – The Cartesian product of G and H. P will be a multi-graph if either G or H is a multi-graph. Will be a directed if G and H are directed, and undirected if G and H are undirected.

Return type NetworkX graph

Raises NetworkXError – If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.

Examples

```python
>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.lexicographic_product(G,H)
>>> P.nodes()
[(0, 'a')]
```
Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

### 4.34.15 strong_product

**strong_product** \((G, H)\)

Return the strong product of \(G\) and \(H\).

The strong product \(P\) of the graphs \(G\) and \(H\) has a node set that is the Cartesian product of the node sets, \(V(P) = V(G) \times V(H)\). \(P\) has an edge \(((u,v),(x,y))\) if and only if \(u=v\) and \((x,y)\) is an edge in \(H\), or \(x=y\) and \((u,v)\) is an edge in \(G\), or \((u,v)\) is an edge in \(G\) and \((x,y)\) is an edge in \(H\).

**Parameters**

- \(H\) \((G, H)\) – Networkx graphs.

**Returns**

- \(P\) – The Cartesian product of \(G\) and \(H\). \(P\) will be a multi-graph if either \(G\) or \(H\) is a multi-graph. Will be directed if \(G\) and \(H\) are directed, and undirected if \(G\) and \(H\) are undirected.

**Return type**

NetworkX graph

**Raises**

- NetworkXError – If \(G\) and \(H\) are not both directed or both undirected.

**Notes**

Node attributes in \(P\) are two-tuple of the \(G\) and \(H\) node attributes. Missing attributes are assigned None.

**Examples**

```python
>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.strong_product(G,H)
>>> P.nodes()
[(0, 'a')]
```

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

### 4.34.16 tensor_product

**tensor_product** \((G, H)\)

Return the tensor product of \(G\) and \(H\).

The tensor product \(P\) of the graphs \(G\) and \(H\) has a node set that is the Cartesian product of the node sets, \(V(P) = V(G) \times V(H)\). \(P\) has an edge \(((u,v),(x,y))\) if and only if \((u,x)\) is an edge in \(G\) and \((v,y)\) is an edge in \(H\).

Tensor product is sometimes also referred to as the categorical product, direct product, cardinal product or conjunction.

**Parameters**

- \(H\) \((G, H)\) – Networkx graphs.

**Returns**

- \(P\) – The tensor product of \(G\) and \(H\). \(P\) will be a multi-graph if either \(G\) or \(H\) is a multi-graph, will be directed if \(G\) and \(H\) are directed, and undirected if \(G\) and \(H\) are undirected.

**Return type**

NetworkX graph

**Raises**

- NetworkXError – If \(G\) and \(H\) are not both directed or both undirected.
Notes

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.

Examples

```python
>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0, a1=True)
>>> H.add_node('a', a2='Spam')
>>> P = nx.tensor_product(G, H)
>>> P.nodes()
[(0, 'a')]
```

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

4.34.17 power

**power**\((G, k)\)

Returns the specified power of a graph.

The \(k\)-th power of a simple graph \(G = (V, E)\) is the graph \(G^k\) whose vertex set is \(V\), two distinct vertices \(u, v\) are adjacent in \(G^k\) if and only if the shortest path distance between \(u\) and \(v\) in \(G\) is at most \(k\).

**Parameters**

- **G (graph)** – A NetworkX simple graph object.
- **k (positive integer)** – The power to which to raise the graph \(G\).

**Returns** \(G\) to the \(k\)-th power.

**Return type** NetworkX simple graph

**Raises**

- **exc:ValueError** – If the exponent \(k\) is not positive.
- **NetworkXError** – If \(G\) is not a simple graph.

Examples

```python
>>> G = nx.path_graph(4)
>>> nx.power(G, 2).edges()
[(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)]
>>> nx.power(G, 3).edges()
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
```

A complete graph of order \(n\) is returned if \(k\) is greater than equal to \(n/2\) for a cycle graph of even order \(n\), and if \(k\) is greater than equal to \((n-1)/2\) for a cycle graph of odd order.

```python
>>> G = nx.cycle_graph(5)
>>> nx.power(G, 2).edges() == nx.complete_graph(5).edges()
True
>>> G = nx.cycle_graph(8)
>>> nx.power(G, 4).edges() == nx.complete_graph(8).edges()
True
```
References

Notes

Exercise 3.1.6 of *Graph Theory* by J. A. Bondy and U. S. R. Murty.

4.35 Rich Club

`rich_club_coefficient(G[, normalized, Q])` Return the rich-club coefficient of the graph G.

4.35.1 rich_club_coefficient

The rich-club coefficient is the ratio, for every degree k, of the number of actual to the number of potential edges for nodes with degree greater than k:

\[ \phi(k) = \frac{2E_k}{N_k(N_k - 1)} \]

where \( N_k \) is the number of nodes with degree larger than \( k \), and \( E_k \) be the number of edges among those nodes.

Parameters

- **G** (NetworkX graph)
- **normalized** (bool (optional)) – Normalize using randomized network (see 100)
- **Q** (float (optional, default=100)) – If normalized=True build a random network by performing \( Q\times M \) double-edge swaps, where M is the number of edges in G, to use as a null-model for normalization.

Returns **rc** – A dictionary, keyed by degree, with rich club coefficient values.

Return type dictionary

Examples

```python
>>> G = nx.Graph([(0,1),(0,2),(1,2),(1,3),(1,4),(4,5)])
>>> rc = nx.rich_club_coefficient(G,normalized=False)
>>> rc[0]
0.4
```

The rich club definition and algorithm are found in 1. This algorithm ignores any edge weights and is not defined for directed graphs or graphs with parallel edges or self loops.

Estimates for appropriate values of Q are found in 101.


4.36 Shortest Paths

Compute the shortest paths and path lengths between nodes in the graph.

These algorithms work with undirected and directed graphs.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest_path</td>
<td>Compute shortest paths in the graph.</td>
</tr>
<tr>
<td>all_shortest_paths</td>
<td>Compute all shortest paths in the graph.</td>
</tr>
<tr>
<td>shortest_path_length</td>
<td>Compute shortest path lengths in the graph.</td>
</tr>
<tr>
<td>average_shortest_path_length</td>
<td>Return the average shortest path length.</td>
</tr>
<tr>
<td>has_path</td>
<td>Return True if G has a path from source to target, False otherwise.</td>
</tr>
</tbody>
</table>

4.36.1 shortest_path

shortest_path (G, source=None, target=None, weight=None)

Compute shortest paths in the graph.

Parameters

- **G** (NetworkX graph) –
- **source** (node, optional) – Starting node for path. If not specified, compute shortest paths using all nodes as source nodes.
- **target** (node, optional) – Ending node for path. If not specified, compute shortest paths using all nodes as target nodes.
- **weight** (None or string, optional (default = None)) – If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1.

Returns

- **path** – All returned paths include both the source and target in the path.

If the source and target are both specified, return a single list of nodes in a shortest path from the source to the target.

If only the source is specified, return a dictionary keyed by targets with a list of nodes in a shortest path from the source to one of the targets.

If only the target is specified, return a dictionary keyed by sources with a list of nodes in a shortest path from one of the sources to the target.

If neither the source nor target are specified return a dictionary of dictionaries with path[source][target]=[list of nodes in path].

Return type list or dictionary

Examples

```python
>>> G=nx.path_graph(5)
>>> print(nx.shortest_path(G,source=0,target=4))
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G,source=0) # target not specified
```
Notes

There may be more than one shortest path between a source and target. This returns only one of them.

See also:

all_pairs_shortest_path(),
all_pairs_dijkstra_path(),
single_source_shortest_path(), single_source_dijkstra_path()

4.36.2 all_shortest_paths

all_shortest_paths (G, source, target, weight=None)

Compute all shortest paths in the graph.

Parameters

- G (NetworkX graph) –
- source (node) – Starting node for path.
- target (node) – Ending node for path.
- weight (None or string, optional (default = None)) – If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1.

Returns paths – A generator of all paths between source and target.

Return type generator of lists

Examples

```python
>>> G=nx.Graph()
>>> G.add_path([0,1,2])
>>> G.add_path([0,10,2])
>>> print([p for p in nx.all_shortest_paths(G,source=0,target=2)])
[[0, 1, 2], [0, 10, 2]]
```

Notes

There may be many shortest paths between the source and target.

See also:

shortest_path(), single_source_shortest_path(), all_pairs_shortest_path()
4.36.3 shortest_path_length

shortest_path_length \((G, source=None, target=None, weight=None)\)

Compute shortest path lengths in the graph.

**Parameters**

- \(G\) (NetworkX graph)
- \(source\) (node, optional) – Starting node for path. If not specified, compute shortest path lengths using all nodes as source nodes.
- \(target\) (node, optional) – Ending node for path. If not specified, compute shortest path lengths using all nodes as target nodes.
- \(weight\) (None or string, optional (default = None)) – If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1.

**Returns**

- \(length\) – If the source and target are both specified, return the length of the shortest path from the source to the target.
- If only the source is specified, return a dictionary keyed by targets whose values are the lengths of the shortest path from the source to one of the targets.
- If only the target is specified, return a dictionary keyed by sources whose values are the lengths of the shortest path from one of the sources to the target.
- If neither the source nor target are specified return a dictionary of dictionaries with \(\text{path}[source][target]=L\), where \(L\) is the length of the shortest path from source to target.

**Return type** int or dictionary

**Raises** NetworkXNoPath – If no path exists between source and target.

**Examples**

```python
>>> G=nx.path_graph(5)
>>> print(nx.shortest_path_length(G,source=0,target=4))
4
>>> p=nx.shortest_path_length(G,source=0) # target not specified
>>> p[4]
4
>>> p=nx.shortest_path_length(G,target=4) # source not specified
>>> p[0]
4
>>> p=nx.shortest_path_length(G) # source,target not specified
>>> p[0][4]
4
```

**Notes**

The length of the path is always 1 less than the number of nodes involved in the path since the length measures the number of edges followed.

For digraphs this returns the shortest directed path length. To find path lengths in the reverse direction use \(G\).reverse(copy=False) first to flip the edge orientation.
average_shortest_path_length(G, weight=None)

Return the average shortest path length.

The average shortest path length is

\[ a = \sum_{s,t \in V} \frac{d(s,t)}{n(n-1)} \]

where \( V \) is the set of nodes in \( G \), \( d(s,t) \) is the shortest path from \( s \) to \( t \), and \( n \) is the number of nodes in \( G \).

Parameters

- \( G \) (NetworkX graph) –
- \( weight \) (None or string, optional (default = None)) – If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1.

Raises NetworkXError – if the graph is not connected.

Examples

```python
>>> G=nx.path_graph(5)
>>> print(nx.average_shortest_path_length(G))
2.0
```

For disconnected graphs you can compute the average shortest path length for each component:

```python
>>> G=nx.Graph([(1,2),(3,4)])
>>> for g in nx.connected_component_subgraphs(G):
... print(nx.average_shortest_path_length(g))
1.0 1.0
```

4.36.5 has_path

has_path(G, source, target)

Return True if \( G \) has a path from source to target, False otherwise.

Parameters

- \( G \) (NetworkX graph) –
- \( source \) (node) – Starting node for path
- \( target \) (node) – Ending node for path

4.36.6 Advanced Interface

Shortest path algorithms for unweighted graphs.

```python
single_source_shortest_path(G, source[, cutoff])
```

Compute shortest path between source and all other nodes reachable.

4.36. Shortest Paths 329
### single_source_shortest_path

**single_source_shortest_path** \((G, \text{source}, \text{cutoff}=\text{None})\)

Compute shortest path between source and all other nodes reachable from source.

**Parameters**

- \(G\) (*NetworkX graph*)
- \(\text{source}\) (*node label*) – Starting node for path
- \(\text{cutoff}\) (*integer, optional*) – Depth to stop the search. Only paths of length \(\leq\) cutoff are returned.

**Returns**

- **lengths** – Dictionary, keyed by target, of shortest paths.

**Return type**

*dictionary*

**Examples**

```python
>>> G=nx.path_graph(5)
>>> path=nx.single_source_shortest_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]
```

**Notes**

The shortest path is not necessarily unique. So there can be multiple paths between the source and each target node, all of which have the same ‘shortest’ length. For each target node, this function returns only one of those paths.

**See also:**

*shortest_path()*

### single_source_shortest_path_length

**single_source_shortest_path_length** \((G, \text{source}, \text{cutoff}=\text{None})\)

Compute the shortest path lengths from source to all reachable nodes.

**Parameters**

- \(G\) (*NetworkX graph*)
- \(\text{source}\) (*node*) – Starting node for path
- \(\text{cutoff}\) (*integer, optional*) – Depth to stop the search. Only paths of length \(\leq\) cutoff are returned.

**Returns**

- **lengths** – Dictionary of shortest path lengths keyed by target.
Return type dictionary

Examples

```python
>>> G=nx.path_graph(5)
>>> length=nx.single_source_shortest_path_length(G,0)
>>> length[4]
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
```

See also:
shortest_path_length()

all_pairs_shortest_path

**all_pairs_shortest_path** *(G, cutoff=None)*

Compute shortest paths between all nodes.

Parameters
- **G** *(NetworkX graph)* –
- **cutoff** *(integer, optional)* – Depth at which to stop the search. Only paths of length at most cutoff are returned.

Returns **lengths** – Dictionary, keyed by source and target, of shortest paths.

Return type dictionary

Examples

```python
>>> G = nx.path_graph(5)
>>> path = nx.all_pairs_shortest_path(G)
>>> print(path[0][4])
[0, 1, 2, 3, 4]
```

See also:
floyd_warshall()

all_pairs_shortest_path_length

**all_pairs_shortest_path_length** *(G, cutoff=None)*

Computes the shortest path lengths between all nodes in G.

Parameters
- **G** *(NetworkX graph)* –
- **cutoff** *(integer, optional)* – Depth at which to stop the search. Only paths of length at most cutoff are returned.

Returns **lengths** – Dictionary of shortest path lengths keyed by source and target.

Return type dictionary
Notes

The dictionary returned only has keys for reachable node pairs.

Examples

```python
>>> G = nx.path_graph(5)
>>> length = nx.all_pairs_shortest_path_length(G)
>>> print(length[1][4])
3
>>> length[1]
{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}
```

predecessor

The function `predecessor` returns a dictionary of predecessors for the path from source to all nodes in G.

**Parameters**

- `G` (NetworkX graph)
- `source` (node label) – Starting node for path
- `target` (node label, optional) – Ending node for path. If provided only predecessors between source and target are returned
- `cutoff` (integer, optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

**Returns**

* pred – Dictionary, keyed by node, of predecessors in the shortest path.

**Return type**

dictionary

Examples

```python
>>> G=nx.path_graph(4)
>>> print(G.nodes())
[0, 1, 2, 3]
>>> nx.predecessor(G,0)
{0: [], 1: [0], 2: [1], 3: [2]}
```

Shortest path algorithms for weighed graphs.

- `dijkstra_path(G, source, target[, weight])` Returns the shortest path from source to target in a weighted graph G.
- `dijkstra_path_length(G, source, target[, weight])` Returns the shortest path length from source to target in a weighted graph.
- `single_source_dijkstra_path(G, source[, ...])` Compute shortest path between source and all other reachable nodes.
- `single_source_dijkstra_path_length(G, source)` Compute the shortest path length between source and all other reachable nodes.
- `all_pairs_dijkstra_path_length(G[, cutoff, weight])` Compute shortest paths between all nodes in a weighted graph.
- `all_pairs_dijkstra_path_length(G[, cutoff, ...])` Compute shortest path lengths between all nodes in a weighted graph.
- `single_source_dijkstra(G, source[, target, ...])` Compute shortest paths and lengths in a weighted graph G.
- `bidirectional_dijkstra(G, source, target[, ...])` Dijkstra’s algorithm for shortest paths using bidirectional search.
- `dijkstra_predecessor_and_distance(G, source)` Compute shortest path length and predecessors on shortest paths in a weighted graph.
- `bellman_ford(G, source[, weight])` Compute shortest path lengths and predecessors on shortest paths in a weighted graph.
negative_edge_cycle(G[, weight])  Return True if there exists a negative edge cycle anywhere in G.

johnson(G[, weight])  Compute shortest paths between all nodes in a weighted graph using Johnson's algorithm.

dijkstra_path  
dijkstra_path(G, source, target, weight='weight')  
Returns the shortest path from source to target in a weighted graph G.

Parameters  
• G (NetworkX graph) –  
• source (node) – Starting node  
• target (node) – Ending node  
• weight (string, optional (default='weight')) – Edge data key corresponding to the edge weight

Returns  path – List of nodes in a shortest path.

Return type  list

Raises  NetworkXNoPath – If no path exists between source and target.

Examples  

```python  
>>> G=nx.path_graph(5)
>>> print(nx.dijkstra_path(G,0,4))
[0, 1, 2, 3, 4]
```

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

See also:  
bidirectional_dijkstra()

dijkstra_path_length  
dijkstra_path_length(G, source, target, weight='weight')  
Returns the shortest path length from source to target in a weighted graph.

Parameters  
• G (NetworkX graph) –  
• source (node label) – starting node for path  
• target (node label) – ending node for path  
• weight (string, optional (default='weight')) – Edge data key corresponding to the edge weight

Returns  length – Shortest path length.

Return type  number

Raises  NetworkXNoPath – If no path exists between source and target.
Examples

```python
>>> G=nx.path_graph(5)
>>> print(nx.dijkstra_path_length(G,0,4))
4
```

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

See also:

`bidirectional_dijkstra()`

**single_source_dijkstra_path**

The `single_source_dijkstra_path` function computes the shortest path between a source node and all other reachable nodes for a weighted graph.

**Parameters**

- `G` (NetworkX graph)
- `source` (node) – Starting node for path.
- `weight` (string, optional (default='weight')) – Edge data key corresponding to the edge weight
- `cutoff` (integer or float, optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

**Returns**

- `paths` – Dictionary of shortest path lengths keyed by target.

**Return type**

- dictionary

Examples

```python
>>> G=nx.path_graph(5)
>>> path=nx.single_source_dijkstra_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]
```

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

See also:

`single_source_dijkstra()`

**single_source_dijkstra_path_length**

The `single_source_dijkstra_path_length` function computes the shortest path length between source and all other reachable nodes for a weighted graph.
Parameters

- **G** (*NetworkX graph*) –
- **source** (*node label*) – Starting node for path
- **weight** (*string, optional (default='weight')*) – Edge data key corresponding to the edge weight.
- **cutoff** (*integer or float, optional*) – Depth to stop the search. Only paths of length ≤ cutoff are returned.

**Returns**

- **length** – Dictionary of shortest lengths keyed by target.

**Return type** dictionary

**Examples**

```python
>>> G=nx.path_graph(5)
>>> length=nx.single_source_dijkstra_path_length(G,0)
>>> length[4]
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
```

**Notes**

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

**See also:**

- `single_source_dijkstra()`

**all_pairs_dijkstra_path**

**all_pairs_dijkstra_path**(*G, cutoff=None, weight='weight'*)

Compute shortest paths between all nodes in a weighted graph.

**Parameters**

- **G** (*NetworkX graph*) –
- **weight** (*string, optional (default='weight')*) – Edge data key corresponding to the edge weight
- **cutoff** (*integer or float, optional*) – Depth to stop the search. Only paths of length ≤ cutoff are returned.

**Returns**

- **distance** – Dictionary, keyed by source and target, of shortest paths.

**Return type** dictionary

**Examples**

```python
>>> G=nx.path_graph(5)
>>> path=nx.all_pairs_dijkstra_path(G)
>>> print(path[0][4])
[0, 1, 2, 3, 4]
```
Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

See also:
floyd_warshall()

all_pairs_dijkstra_path_length

all_pairs_dijkstra_path_length \((G, \text{cutoff}=\text{None}, \text{weight}=\text{'weight'})\)

Compute shortest path lengths between all nodes in a weighted graph.

Parameters

• \(G\) (\text{NetworkX graph}) –

• \text{weight} (\text{string, optional (default='weight')}) – Edge data key corresponding to the edge weight

• \text{cutoff} (\text{integer or float, optional}) – Depth to stop the search. Only paths of length \(\leq\) cutoff are returned.

Returns \text{distance} – Dictionary, keyed by source and target, of shortest path lengths.

Return type dictionary

Examples

```python
>>> G=nx.path_graph(5)
>>> length=nx.all_pairs_dijkstra_path_length(G)
>>> print(length[1][4])
3
>>> length[1]
{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}
```

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

The dictionary returned only has keys for reachable node pairs.

single_source_dijkstra

single_source_dijkstra \((G, \text{source}=\text{None}, \text{target}=\text{None}, \text{cutoff}=\text{None}, \text{weight}=\text{'weight'})\)

Compute shortest paths and lengths in a weighted graph \(G\).

Uses Dijkstra’s algorithm for shortest paths.

Parameters

• \(G\) (\text{NetworkX graph}) –

• \text{source} (\text{node label}) – Starting node for path

• \text{target} (\text{node label, optional}) – Ending node for path
NetworkX Reference, Release 1.10

- **cutoff** *(integer or float, optional)* – Depth to stop the search. Only paths of length <= cutoff are returned.

**Returns**
- **distance**
- **path**

- **distance** *(path)* – Returns a tuple of two dictionaries keyed by node. The first dictionary stores distance from the source. The second stores the path from the source to that node.

**Return type**
- dictionaries

**Examples**

```python
g = nx.path_graph(5)
length, path = nx.single_source_dijkstra(g, 0)
print(length[4])
print(length)
print(path[4])
```

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

Based on the Python cookbook recipe (119466) at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466

This algorithm is not guaranteed to work if edge weights are negative or are floating point numbers (overflows and roundoff errors can cause problems).

**See also**
- single_source_dijkstra_path()
- single_source_dijkstra_path_length()

**bidirectional_dijkstra**

**bidirectional_dijkstra** *(G, source, target, weight=’weight’)*

Dijkstra’s algorithm for shortest paths using bidirectional search.

**Parameters**
- **G** *(NetworkX graph)* –
- **source** *(node)* – Starting node.
- **target** *(node)* – Ending node.
- **weight** *(string, optional (default=’weight’))* – Edge data key corresponding to the edge weight

**Returns**
- **length** *(number)* – Shortest path length.
- **Returns a tuple of two dictionaries keyed by node.**
- **The first dictionary stores distance from the source.**
- **The second stores the path from the source to that node.**

**Raises**
- NetworkXNoPath – If no path exists between source and target.
Examples

```python
>>> G=nx.path_graph(5)
>>> length,path=nx.bidirectional_dijkstra(G,0,4)
>>> print(length)
4
>>> print(path)
[0, 1, 2, 3, 4]
```

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

In practice bidirectional Dijkstra is much more than twice as fast as ordinary Dijkstra.

Ordinary Dijkstra expands nodes in a sphere-like manner from the source. The radius of this sphere will eventually be the length of the shortest path. Bidirectional Dijkstra will expand nodes from both the source and the target, making two spheres of half this radius. Volume of the first sphere is $\pi r^2$ while the others are $2\pi r^2 / 2$, making up half the volume.

This algorithm is not guaranteed to work if edge weights are negative or are floating point numbers (overflows and roundoff errors can cause problems).

See also:
shortest_path(), shortest_path_length()

dijkstra_predecessor_and_distance

dijkstra_predecessor_and_distance(G, source, cutoff=None, weight='weight')
Compute shortest path length and predecessors on shortest paths in weighted graphs.

Parameters

- **G** (*NetworkX graph*) –
- **source** (*node label*) – Starting node for path
- **weight** (*string, optional (default='weight')*) – Edge data key corresponding to the edge weight
- **cutoff** (*integer or float, optional*) – Depth to stop the search. Only paths of length $\leq$ cutoff are returned.

Returns **pred, distance** – Returns two dictionaries representing a list of predecessors of a node and the distance to each node.

Return type **dictionaries**

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.
The list of predecessors contains more than one element only when there are more than one shortest paths to the key node.
bellman_ford

**bellman_ford** *(G, source, weight='weight')*

Compute shortest path lengths and predecessors on shortest paths in weighted graphs.

The algorithm has a running time of \(O(mn)\) where \(n\) is the number of nodes and \(m\) is the number of edges. It is slower than Dijkstra but can handle negative edge weights.

**Parameters**

- **G** *(NetworkX graph)* – The algorithm works for all types of graphs, including directed graphs and multigraphs.
- **source** *(node label)* – Starting node for path
- **weight** *(string, optional (default='weight'))* – Edge data key corresponding to the edge weight

**Returns** **pred, dist** – Returns two dictionaries keyed by node to predecessor in the path and to the distance from the source respectively.

**Return type** dictionaries

**Raises** NetworkXUnbounded – If the (di)graph contains a negative cost (di)cycle, the algorithm raises an exception to indicate the presence of the negative cost (di)cycle. Note: any negative weight edge in an undirected graph is a negative cost cycle.

**Examples**

```python
>>> import networkx as nx
>>> G = nx.path_graph(5, create_using = nx.DiGraph())
>>> pred, dist = nx.bellman_ford(G, 0)
>>> sorted(pred.items())
[(0, None), (1, 0), (2, 1), (3, 2), (4, 3)]
>>> sorted(dist.items())
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
```

```python
>>> from nose.tools import assert_raises
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> G[1][2]['weight'] = -7
>>> assert_raises(nx.NetworkXUnbounded, nx.bellman_ford, G, 0)
```

**Notes**

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

The dictionaries returned only have keys for nodes reachable from the source.

In the case where the (di)graph is not connected, if a component not containing the source contains a negative cost (di)cycle, it will not be detected.

negative_edge_cycle

**negative_edge_cycle** *(G, weight='weight')*

Return True if there exists a negative edge cycle anywhere in G.

**Parameters**
negative_cycle

Returns negative_cycle – True if a negative edge cycle exists, otherwise False.
Return type bool

Examples

```python
>>> import networkx as nx
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> print(nx.negative_edge_cycle(G))
False
>>> G[1][2]['weight'] = -7
>>> print(nx.negative_edge_cycle(G))
True
```

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.
This algorithm uses bellman_ford() but finds negative cycles on any component by first adding a new node
connected to every node, and starting bellman_ford on that node. It then removes that extra node.

johnson

johnson (G, weight='weight')
Compute shortest paths between all nodes in a weighted graph using Johnson’s algorithm.

Parameters

• G (NetworkX graph) –
• weight (string, optional (default='weight')) – Edge data key corresponding to the edge weight.

Returns distance – Dictionary, keyed by source and target, of shortest paths.
Return type dictionary

Raises NetworkXError – If given graph is not weighted.

Examples

```python
>>> import networkx as nx
>>> graph = nx.DiGraph()
>>> graph.add_weighted_edges_from([(0, 3, 3), (0, 1, -5), ...
...
(0, 2, 2), (1, 2, 4), (2, 3, 1)])
>>> paths = nx.johnson(graph, weight='weight')
>>> paths['0']['2']
[0, 1, 2]```
Johnson’s algorithm is suitable even for graphs with negative weights. It works by using the Bellman–Ford algorithm to compute a transformation of the input graph that removes all negative weights, allowing Dijkstra’s algorithm to be used on the transformed graph.

It may be faster than Floyd-Warshall algorithm in sparse graphs. Algorithm complexity: $O(V^2 \log V + V \cdot E)$

See also:
floyd_warshall_predecessor_and_distance(), floyd_warshall_numpy(), all_pairs_shortest_path(), all_pairs_shortest_path_length(), all_pairs_dijkstra_path(), bellman_ford()

4.36.7 Dense Graphs
Floyd-Warshall algorithm for shortest paths.

\[
\begin{array}{|l|}
\hline
\text{floyd_warshall}(G[, weight]) & \text{Find all-pairs shortest path lengths using Floyd’s algorithm.} \\
\text{floyd_warshall_predecessor_and_distance}(G[, ...]) & \text{Find all-pairs shortest path lengths using Floyd’s algorithm.} \\
\text{floyd_warshall_numpy}(G[, nodelist, weight]) & \text{Find all-pairs shortest path lengths using Floyd’s algorithm.} \\
\hline
\end{array}
\]

floyd_warshall

\[
floyd_warshall \ (G, weight='weight')
\]
Find all-pairs shortest path lengths using Floyd’s algorithm.

Parameters

- \(G\) (NetworkX graph)
- \(weight\) (string, optional (default= ‘weight’)) – Edge data key corresponding to the edge weight.

Returns

- \(distance\) (dict) – A dictionary, keyed by source and target, of shortest paths distances between nodes.
- Notes

See also:
floyd_warshall_predecessor_and_distance(), floyd_warshall_numpy(), all_pairs_shortest_path(), all_pairs_shortest_path_length()

floyd_warshall_predecessor_and_distance

\[
floyd_warshall_predecessor_and_distance \ (G, weight='weight')
\]
Find all-pairs shortest path lengths using Floyd’s algorithm.
Parameters

- **G** *(NetworkX graph)*
- **weight** *(string, optional (default= 'weight'))* – Edge data key corresponding to the edge weight.

Returns

- **predecessor,distance** *(dictionaries)* – Dictionaries, keyed by source and target, of predecessors and distances in the shortest path.

Notes

- *Floyd’s algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when Dijkstra’s algorithm fails. This algorithm can still fail if there are negative cycles. It has running time O(n^3) with running space of O(n^2).*

See also:

- `floyd_warshall()`, `floyd_warshall_numpy()`, `all_pairs_shortest_path()`, `all_pairs_shortest_path_length()`

floyd_warshall_numpy

`floyd_warshall_numpy(G, nodelist=None, weight='weight')`

Find all-pairs shortest path lengths using Floyd’s algorithm.

Parameters

- **G** *(NetworkX graph)*
- **nodelist** *(list, optional)* – The rows and columns are ordered by the nodes in nodelist. If nodelist is None then the ordering is produced by G.nodes().
- **weight** *(string, optional (default= 'weight'))* – Edge data key corresponding to the edge weight.

Returns

- **distance** *(NumPy matrix)* – A matrix of shortest path distances between nodes. If there is no path between to nodes the corresponding matrix entry will be Inf.

Notes

- *Floyd’s algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when Dijkstra’s algorithm fails. This algorithm can still fail if there are negative cycles. It has running time O(n^3) with running space of O(n^2).*

4.36.8 A* Algorithm

Shortest paths and path lengths using A* (“A star”) algorithm.
astar_path

astar_path \((G, \text{source}, \text{target}, \text{heuristic}={\text{None}}, \text{weight}={\text{weight}}) \)

Return a list of nodes in a shortest path between source and target using the A* (“A-star”) algorithm.

There may be more than one shortest path. This returns only one.

Parameters

- \(G \) (NetworkX graph) –
- \(\text{source} \) (node) – Starting node for path
- \(\text{target} \) (node) – Ending node for path
- \(\text{heuristic} \) (function) – A function to evaluate the estimate of the distance from the a node to the target. The function takes two nodes arguments and must return a number.
- \(\text{weight} \) (string, optional (default=’weight’)) – Edge data key corresponding to the edge weight.

Raises NetworkXNoPath – If no path exists between source and target.

Examples

```python
>>> G=nx.path_graph(5)
>>> print(nx.astar_path(G,0,4))
[0, 1, 2, 3, 4]
>>> G=nx.grid_graph(dim=[3,3]) # nodes are two-tuples (x,y)
>>> def dist(a, b):
...     (x1, y1) = a
...     (x2, y2) = b
...     return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
>>> print(nx.astar_path(G,(0,0),(2,2),dist))
[(0, 0), (0, 1), (1, 1), (1, 2), (2, 2)]
```

See also: shortest_path(), dijkstra_path()

astar_path_length

astar_path_length \((G, \text{source}, \text{target}, \text{heuristic}={\text{None}}, \text{weight}={\text{weight}}) \)

Return the length of the shortest path between source and target using the A* (“A-star”) algorithm.

Parameters

- \(G \) (NetworkX graph) –
- \(\text{source} \) (node) – Starting node for path
- \(\text{target} \) (node) – Ending node for path
- \(\text{heuristic} \) (function) – A function to evaluate the estimate of the distance from the a node to the target. The function takes two nodes arguments and must return a number.
NetworkX Reference, Release 1.10

 Raises NetworkXNoPath – If no path exists between source and target.

 See also:

 \texttt{astra_path()}

 4.37 Simple Paths

 \texttt{all_simple_paths}(G, source, target[, cutoff]) \quad Generate all simple paths in the graph \(G\) from source to target.

 \texttt{shortest_simple_paths}(G, source, target[,...]) \quad Generate all simple paths in the graph \(G\) from source to target, starting from

 4.37.1 all_simple_paths

 \texttt{all_simple_paths}(G, source, target, cutoff=None) \quad Generate all simple paths in the graph \(G\) from source to target.

 A simple path is a path with no repeated nodes.

 Parameters

 \begin{itemize}
 \item \(G\) (NetworkX graph) –
 \item source (node) – Starting node for path
 \item target (node) – Ending node for path
 \item cutoff (integer, optional) – Depth to stop the search. Only paths of length \(\leq\) cutoff are returned.
 \end{itemize}

 Returns path_generator – A generator that produces lists of simple paths. If there are no paths between the source and target within the given cutoff the generator produces no output.

 Return type generator

 Examples

 \begin{verbatim}
 >>> G = nx.complete_graph(4)
 >>> for path in nx.all_simple_paths(G, source=0, target=3):
 ... print(path)
 ... [0, 1, 2, 3]
 [0, 1, 3]
 [0, 2, 1, 3]
 [0, 2, 3]
 [0, 3]
 >>> paths = nx.all_simple_paths(G, source=0, target=3, cutoff=2)
 >>> print(list(paths))
 [[0, 1, 3], [0, 2, 3], [0, 3]]
 \end{verbatim}

 Notes

 This algorithm uses a modified depth-first search to generate the paths102. A single path can be found in \(O(V + E)\) time but the number of simple paths in a graph can be very large, e.g. \(O(n!)\) in the complete graph.

of order \(n\).

References

See also:

all_shortest_paths(), shortest_path()

4.37.2 shortest_simple_paths

shortest_simple_paths \((G, \text{source}, \text{target}, \text{weight}=\text{None})\)

Generate all simple paths in the graph \(G\) from \text{source} to \text{target}, starting from shortest ones.

A simple path is a path with no repeated nodes.

If a weighted shortest path search is to be used, no negative weights are allowed.

Parameters

- \(G\) \((\text{NetworkX graph})\)
- \text{source} \((\text{node})\) – Starting node for path
- \text{target} \((\text{node})\) – Ending node for path
- \text{weight} \((\text{string})\) – Name of the edge attribute to be used as a weight. If None all edges are considered to have unit weight. Default value None.

Returns \(\text{path_generator}\) – A generator that produces lists of simple paths, in order from shortest to longest.

Return type generator

Raises

- NetworkXNoPath – If no path exists between source and target.
- NetworkXError – If source or target nodes are not in the input graph.
- NetworkXNotImplemented – If the input graph is a Multi[Di]Graph.

Examples

```python
>>> G = nx.cycle_graph(7)
>>> paths = list(nx.shortest_simple_paths(G, 0, 3))
>>> print(paths)
[[0, 1, 2, 3], [0, 6, 5, 4, 3]]
```

You can use this function to efficiently compute the \(k\) shortest/best paths between two nodes.

```python
>>> from itertools import islice
>>> def k_shortest_paths(G, source, target, k, weight=\text{None}): ...
...     return list(islice(nx.shortest_simple_paths(G, source, target, weight=weight), k))
```

```python
>>> for path in k_shortest_paths(G, 0, 3, 2):
...     print(path)
[0, 1, 2, 3]
[0, 6, 5, 4, 3]
```

4.37. Simple Paths
Notes

This procedure is based on algorithm by Jin Y. Yen103. Finding the first K paths requires \(O(KN^3)\) operations.
See also:
\texttt{all_shortest_paths()}, \texttt{shortest_path()}, \texttt{all_simple_paths()}

References

4.38 Swap

Swap edges in a graph.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{double_edge_swap(G[, nswap, max_tries])}</td>
<td>Swap two edges in the graph while keeping the node degrees fixed.</td>
</tr>
<tr>
<td>\texttt{connected_double_edge_swap(G[, nswap, ...])}</td>
<td>Attempts the specified number of double-edge swaps in the graph (G).</td>
</tr>
</tbody>
</table>

4.38.1 \texttt{double_edge_swap}

\texttt{double_edge_swap}(G, \texttt{nswap=1, max_tries=100})

Swap two edges in the graph while keeping the node degrees fixed.

A double-edge swap removes two randomly chosen edges \(u-v\) and \(x-y\) and creates the new edges \(u-x\) and \(v-y\):

\[
\begin{array}{c|c|c}
 u & \rightarrow v & u \rightarrow x \\
 x & \rightarrow y & v \rightarrow y \\
\end{array}
\]

If either the edge \(u-x\) or \(v-y\) already exist no swap is performed and another attempt is made to find a suitable edge pair.

Parameters

- \texttt{G (graph)} – An undirected graph
- \texttt{nswap (integer (optional, default=1))} – Number of double-edge swaps to perform
- \texttt{max_tries (optional)} – Maximum number of attempts to swap edges

Returns \(G\) – The graph after double edge swaps.

Return type graph

Notes

Does not enforce any connectivity constraints.

The graph \(G\) is modified in place.

4.38.2 connected_double_edge_swap

`connected_double_edge_swap(G, nswap=1, _window_threshold=3)`

Attempts the specified number of double-edge swaps in the graph `G`.

A double-edge swap removes two randomly chosen edges `(u, v)` and `(x, y)` and creates the new edges `(u, x)` and `(v, y):

```
  u--v  u  v
  becomes    |
  x--y  x  y
```

If either `(u, x)` or `(v, y)` already exist, then no swap is performed so the actual number of swapped edges is always at most `nswap`.

Parameters

- `G` *(graph)* – An undirected graph
- `nswap` *(integer (optional, default=1))* – Number of double-edge swaps to perform
- `_window_threshold` *(integer)* – The window size below which connectedness of the graph will be checked after each swap.

The “window” in this function is a dynamically updated integer that represents the number of swap attempts to make before checking if the graph remains connected. It is an optimization used to decrease the running time of the algorithm in exchange for increased complexity of implementation.

If the window size is below this threshold, then the algorithm checks after each swap if the graph remains connected by checking if there is a path joining the two nodes whose edge was just removed. If the window size is above this threshold, then the algorithm performs do all the swaps in the window and only then check if the graph is still connected.

Returns The number of successful swaps
Return type `int`
Raises `NetworkXError` –

If the input graph is not connected, or if the graph has fewer than four nodes.

Notes

The initial graph `G` must be connected, and the resulting graph is connected. The graph `G` is modified in place.

References

4.39 Traversal

4.39.1 Depth First Search

Depth-first search

Basic algorithms for depth-first searching the nodes of a graph.

dfs_edges

dfs_edges *(G, source=None)*

Produce edges in a depth-first-search (DFS).

Parameters

- **G** (*NetworkX graph*)
- **source** (*node, optional*)

Returns

edges – A generator of edges in the depth-first-search.

Return type
generator

Examples

```python
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_edges(G,0)))
[(0, 1), (1, 2)]
```

Notes

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched.

dfs_tree

dfs_tree *(G, source)*

Return oriented tree constructed from a depth-first-search from source.

Parameters

- **G** (*NetworkX graph*)
- **source** (*node, optional*)

Returns

T – An oriented tree

Return type
NetworkX DiGraph
Examples

```python
>>> G = nx.Graph()
>>> G.add_path([0, 1, 2])
>>> T = nx.dfs_tree(G, 0)
>>> print(T.edges())
[(0, 1), (1, 2)]
```

dfs_predecessors

dfs_predecessors \((G, source=None)\)

Return dictionary of predecessors in depth-first-search from source.

Parameters

- \(G\) (NetworkX graph) –
- \(source\) (node, optional) – Specify starting node for depth-first search and return edges in the component reachable from source.

Returns \(pred\) – A dictionary with nodes as keys and predecessor nodes as values.

Return type \(dict\)

Examples

```python
>>> G = nx.Graph()
>>> G.add_path([0, 1, 2])
>>> print(nx.dfs_predecessors(G, 0))
{1: 0, 2: 1}
```

Notes

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched.

dfs_successors

dfs_successors \((G, source=None)\)

Return dictionary of successors in depth-first-search from source.

Parameters

- \(G\) (NetworkX graph) –
- \(source\) (node, optional) – Specify starting node for depth-first search and return edges in the component reachable from source.

Returns \(succ\) – A dictionary with nodes as keys and list of successor nodes as values.

Return type \(dict\)
Examples

```python
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.dfs_successors(G,0))
{0: [1], 1: [2]}
```

Notes

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched.

dfs_preorder_nodes

```python
def dfs_preorder_nodes(G, source=None)
    Produce nodes in a depth-first-search pre-ordering starting from source.
```

Parameters

- `G (NetworkX graph)`
- `source (node, optional)` – Specify starting node for depth-first search and return edges in the component reachable from source.

Returns

- `nodes` – A generator of nodes in a depth-first-search pre-ordering.

Return type

generator

Examples

```python
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_preorder_nodes(G,0)))
[0, 1, 2]
```

Notes

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched.

dfs_postorder_nodes

```python
def dfs_postorder_nodes(G, source=None)
    Produce nodes in a depth-first-search post-ordering starting from source.
```

Parameters

- `G (NetworkX graph)`

Notes

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched.
• **source** (*node, optional*) – Specify starting node for depth-first search and return edges in the component reachable from source.

Returns nodes – A generator of nodes in a depth-first-search post-ordering.

Return type generator

Examples

```python
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_postorder_nodes(G,0)))
[2, 1, 0]
```

Notes

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched.

dfs_labeled_edges

dfs_labeled_edges (*G, source=None*)

Produce edges in a depth-first-search (DFS) labeled by type.

Parameters

• *G* (*NetworkX graph*) –

• *source* (*node, optional*) – Specify starting node for depth-first search and return edges in the component reachable from source.

Returns edges – A generator of edges in the depth-first-search labeled with ‘forward’, ‘nontree’, and ‘reverse’.

Return type generator

Examples

```python
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> edges = (list(nx.dfs_labeled_edges(G,0)))
```

Notes

If a source is not specified then a source is chosen arbitrarily and repeatedly until all components in the graph are searched.
4.39.2 Breadth First Search

Breadth-first search

Basic algorithms for breadth-first searching the nodes of a graph.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bfs_edges(G, source[, reverse])</code></td>
<td>Produce edges in a breadth-first-search starting at source.</td>
</tr>
<tr>
<td><code>bfs_tree(G, source[, reverse])</code></td>
<td>Return an oriented tree constructed from of a breadth-first-search starting at source.</td>
</tr>
<tr>
<td><code>bfs_predecessors(G, source)</code></td>
<td>Return dictionary of predecessors in breadth-first-search from source.</td>
</tr>
<tr>
<td><code>bfs_successors(G, source)</code></td>
<td>Return dictionary of successors in breadth-first-search from source.</td>
</tr>
</tbody>
</table>

bfs_edges

bfs_edges \((G, \text{source}, \text{reverse}=False)\)
Produce edges in a breadth-first-search starting at source.

Parameters

- **G** (NetworkX graph)
- **source** (node) – Specify starting node for breadth-first search and return edges in the component reachable from source.
- **reverse** (bool, optional) – If True traverse a directed graph in the reverse direction

Returns
- edges – A generator of edges in the breadth-first-search.

Return type
generator

Examples

```python
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.bfs_edges(G,0)))
[(0, 1), (1, 2)]
```

Notes

bfs_tree

bfs_tree \((G, \text{source}, \text{reverse}=False)\)
Return an oriented tree constructed from of a breadth-first-search starting at source.

Parameters

- **G** (NetworkX graph)
- **source** (node) – Specify starting node for breadth-first search and return edges in the component reachable from source.
- **reverse** (bool, optional) – If True traverse a directed graph in the reverse direction

Returns
- T – An oriented tree
Return type NetworkX DiGraph

Examples

```python
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.bfs_edges(G,0))
[(0, 1), (1, 2)]
```

Notes

bfs_predecessors

bfs_predecessors(G, source)

Return dictionary of predecessors in breadth-first-search from source.

Parameters

- G (NetworkX graph) –
- source (node) – Specify starting node for breadth-first search and return edges in the component reachable from source.

Returns pred – A dictionary with nodes as keys and predecessor nodes as values.

Return type dict

Examples

```python
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.bfs_predecessors(G,0))
{1: 0, 2: 1}
```

Notes

bfs_successors

bfs_successors(G, source)

Return dictionary of successors in breadth-first-search from source.

Parameters

- G (NetworkX graph) –
- source (node) – Specify starting node for breadth-first search and return edges in the component reachable from source.

Returns succ – A dictionary with nodes as keys and list of successors nodes as values.
Return type dict

Examples

```python
>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.bfs_successors(G,0))
{0: [1], 1: [2]}
```

Notes

4.39.3 Depth First Search on Edges

Depth First Search on Edges

Algorithms for a depth-first traversal of edges in a graph.

edge_dfs(G[, source, orientation]) A directed, depth-first traversal of edges in G, beginning at source.

edge_dfs

edge_dfs(G, source=None, orientation='original')
A directed, depth-first traversal of edges in G, beginning at source.

Parameters

- G (graph) – A directed/undirected graph/multigraph.
- source (node, list of nodes) – The node from which the traversal begins. If None, then a source is chosen arbitrarily and repeatedly until all edges from each node in the graph are searched.
- orientation ('original' | 'reverse' | 'ignore') – For directed graphs and directed multigraphs, edge traversals need not respect the original orientation of the edges. When set to 'reverse', then every edge will be traversed in the reverse direction. When set to 'ignore', then each directed edge is treated as a single undirected edge that can be traversed in either direction. For undirected graphs and undirected multigraphs, this parameter is meaningless and is not consulted by the algorithm.

Yields edge (directed edge) – A directed edge indicating the path taken by the depth-first traversal. For graphs, edge is of the form (u, v) where u and v are the tail and head of the edge as determined by the traversal. For multigraphs, edge is of the form (u, v, key), where key is the key of the edge. When the graph is directed, then u and v are always in the order of the actual directed edge. If orientation is 'reverse' or 'ignore', then edge takes the form (u, v, key, direction) where direction is a string, ‘forward’ or ‘reverse’, that indicates if the edge was traversed in the forward (tail to head) or reverse (head to tail) direction, respectively.
Examples

```python
>>> import networkx as nx
>>> nodes = [0, 1, 2, 3]
>>> edges = [(0, 1), (1, 0), (1, 0), (2, 1), (3, 1)]

>>> list(nx.edge_dfs(nx.Graph(edges), nodes))
[(0, 1), (1, 2), (1, 3)]

>>> list(nx.edge_dfs(nx.DiGraph(edges), nodes))
[(0, 1), (1, 0), (2, 1), (3, 1)]

>>> list(nx.edge_dfs(nx.MultiGraph(edges), nodes))
[(0, 1, 0), (1, 0, 1), (0, 1, 2), (1, 2, 0), (1, 3, 0)]

>>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes))
[(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 1, 0), (3, 1, 0)]

>>> list(nx.edge_dfs(nx.DiGraph(edges), nodes, orientation='ignore'))
[(0, 1, 'forward'), (1, 0, 'forward'), (2, 1, 'reverse'), (3, 1, 'reverse')]

>>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes, orientation='ignore'))
[(0, 1, 0, 'forward'), (1, 0, 0, 'forward'), (1, 0, 1, 'reverse'), (2, 1, 0, 'reverse'), (3, 1, 'reverse')]
```

Notes

The goal of this function is to visit edges. It differs from the more familiar depth-first traversal of nodes, as provided by `networkx.algorithms.traversal.depth_first_search.dfs_edges()`, in that it does not stop once every node has been visited. In a directed graph with edges [(0, 1), (1, 2), (2, 1)], the edge (2, 1) would not be visited if not for the functionality provided by this function.

See also:

dfs_edges()

4.40 Tree

4.40.1 Recognition

Recognition Tests

A forest is an acyclic, undirected graph, and a tree is a connected forest. Depending on the subfield, there are various conventions for generalizing these definitions to directed graphs.

In one convention, directed variants of forest and tree are defined in an identical manner, except that the direction of the edges is ignored. In effect, each directed edge is treated as a single undirected edge. Then, additional restrictions are imposed to define branchings and arborescences.

In another convention, directed variants of forest and tree correspond to the previous convention’s branchings and arborescences, respectively. Then two new terms, polyforest and polytree, are defined to correspond to the other convention’s forest and tree.

Summarizing:
Each convention has its reasons. The first convention emphasizes definitional similarity in that directed forests and
trees are only concerned with acyclicity and do not have an in-degree constraint, just as their undirected counterparts do
not. The second convention emphasizes functional similarity in the sense that the directed analog of a spanning tree is
a spanning arborescence. That is, take any spanning tree and choose one node as the root. Then every edge is assigned
a direction such there is a directed path from the root to every other node. The result is a spanning arborescence.

NetworkX follows convention “A”. Explicitly, these are:

undirected forest An undirected graph with no undirected cycles.

undirected tree A connected, undirected forest.

directed forest A directed graph with no undirected cycles. Equivalently, the underlying graph structure (which
ignores edge orientations) is an undirected forest. In convention B, this is known as a polyforest.

directed tree A weakly connected, directed forest. Equivalently, the underlying graph structure (which ignores edge
orientations) is an undirected tree. In convention B, this is known as a polytree.

branching A directed forest with each node having, at most, one parent. So the maximum in-degree is equal to 1. In
convention B, this is known as a forest.

arborescence A directed tree with each node having, at most, one parent. So the maximum in-degree is equal to 1.
In convention B, this is known as a tree.

For trees and arborescences, the adjective “spanning” may be added to designate that the graph, when considered as
a forest/branching, consists of a single tree/arborescence that includes all nodes in the graph. It is true, by definition,
that every tree/arborescence is spanning with respect to the nodes that define the tree/arborescence and so, it might
seem redundant to introduce the notion of “spanning”. However, the nodes may represent a subset of nodes from a
larger graph, and it is in this context that the term “spanning” becomes a useful notion.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_tree(G)</code></td>
<td>Returns True if G is a tree.</td>
</tr>
<tr>
<td><code>is_forest(G)</code></td>
<td>Returns True if G is a forest.</td>
</tr>
<tr>
<td><code>is_arborescence(G)</code></td>
<td>Returns True if G is an arborescence.</td>
</tr>
<tr>
<td><code>is_branching(G)</code></td>
<td>Returns True if G is a branching.</td>
</tr>
</tbody>
</table>

is_tree

is_tree(G)

Returns True if G is a tree.

A tree is a connected graph with no undirected cycles.

For directed graphs, G is a tree if the underlying graph is a tree. The underlying graph is obtained by treating
each directed edge as a single undirected edge in a multigraph.

Parameters G (graph) – The graph to test.

Returns b – A boolean that is True if G is a tree.

Return type bool
Notes

In another convention, a directed tree is known as a *polytree* and then *tree* corresponds to an *arborescence*.

See also:

is_arborescence()

is_forest

is_forest(G)

Returns *True* if G is a forest.

A forest is a graph with no undirected cycles.

For directed graphs, G is a forest if the underlying graph is a forest. The underlying graph is obtained by treating each directed edge as a single undirected edge in a multigraph.

Parameters

- **G (graph)** – The graph to test.

Returns

- **b** – A boolean that is *True* if G is a forest.

Return type

bool

Notes

In another convention, a directed forest is known as a *polyforest* and then *forest* corresponds to a *branching*.

See also:

is_branching()

is_arborescence

is_arborescence(G)

Returns *True* if G is an arborescence.

An arborescence is a directed tree with maximum in-degree equal to 1.

Parameters

- **G (graph)** – The graph to test.

Returns

- **b** – A boolean that is *True* if G is an arborescence.

Return type

bool

Notes

In another convention, an arborescence is known as a *tree*.

See also:

is_tree()
is_branching

is_branching(G)
Returns True if G is a branching.

A branching is a directed forest with maximum in-degree equal to 1.

Parameters G (directed graph) – The directed graph to test.

Returns b – A boolean that is True if G is a branching.

Return type bool

Notes

In another convention, a branching is also known as a forest.

See also:

is_forest()

4.40.2 Branchings and Spanning Arborescences

Algorithms for finding optimum branchings and spanning arborescences.

This implementation is based on:

http://archive.org/details/jresv71Bn4p233

branching_weight(G[, attr, default]) Returns the total weight of a branching.

greedy_branching(G[, attr, default, kind]) Returns a branching obtained through a greedy algorithm.

maximum_branching(G[, attr, default]) Returns a maximum branching from G.

minimum_branching(G[, attr, default]) Returns a minimum branching from G.

maximum_spanning_arborescence(G[, attr, default]) Returns a maximum spanning arborescence from G.

minimum_spanning_arborescence(G[, attr, default]) Returns a minimum spanning arborescence from G.

Edmonds(G[, seed]) Edmonds algorithm for finding optimal branchings and spanning arborescences.

branching_weight

branching_weight(G, attr='weight', default=1)
Returns the total weight of a branching.

greedy_branching

greedy_branching(G, attr='weight', default=1, kind='max')
Returns a branching obtained through a greedy algorithm.

This algorithm is wrong, and cannot give a proper optimal branching. However, we include it for pedagogical reasons, as it can be helpful to see what its outputs are.

The output is a branching, and possibly, a spanning arborescence. However, it is not guaranteed to be optimal in either case.

Parameters
- **G (DiGraph)** – The directed graph to scan.
- **attr (str)** – The attribute to use as weights. If None, then each edge will be treated equally with a weight of 1.
- **default (float)** – When attr is not None, then if an edge does not have that attribute, default specifies what value it should take.
- **kind (str)** – The type of optimum to search for: ‘min’ or ‘max’ greedy branching.

Returns B – The greedily obtained branching.

Return type directed graph

maximum_branching

maximum_branching *(G, attr='weight', default=1)*

Returns a maximum branching from G.

Parameters

- **G ((multi)digraph-like)** – The graph to be searched.
- **attr (str)** – The edge attribute used to in determining optimality.
- **default (float)** – The value of the edge attribute used if an edge does not have the attribute attr.

Returns B – A maximum branching.

Return type (multi)digraph-like

minimum_branching

minimum_branching *(G, attr='weight', default=1)*

Returns a minimum branching from G.

Parameters

- **G ((multi)digraph-like)** – The graph to be searched.
- **attr (str)** – The edge attribute used to in determining optimality.
- **default (float)** – The value of the edge attribute used if an edge does not have the attribute attr.

Returns B – A minimum branching.

Return type (multi)digraph-like

maximum_spanning_arborescence

maximum_spanning_arborescence *(G, attr='weight', default=1)*

Returns a maximum spanning arborescence from G.

Parameters

- **G ((multi)digraph-like)** – The graph to be searched.
- **attr (str)** – The edge attribute used to in determining optimality.
• **default** *(float)* – The value of the edge attribute used if an edge does not have the attribute attr.

Returns B – A maximum spanning arborescence.

Return type *(multi)digraph-like*

Raises `NetworkXException` – If the graph does not contain a maximum spanning arborescence.

minimum_spanning_arborescence

`minimum_spanning_arborescence(G, attr='weight', default=1)`

Returns a minimum spanning arborescence from G.

Parameters

• **G** *(digraph-like)* – The graph to be searched.

• **attr** *(str)* – The edge attribute used to in determining optimality.

• **default** *(float)* – The value of the edge attribute used if an edge does not have the attribute attr.

Returns B – A minimum spanning arborescence.

Return type *(multi)digraph-like*

Raises `NetworkXException` – If the graph does not contain a minimum spanning arborescence.

Edmonds

class Edmonds(G, seed=None)

Edmonds algorithm for finding optimal branchings and spanning arborescences.

__init__(G, seed=None)

Methods

__init__(G, seed)

find_optimum([attr, default, kind, style]) Returns a branching from G.

4.41 Triads

Functions for analyzing triads of a graph.

triadic_census(G) Determines the triadic census of a directed graph.

4.41.1 triadic_census

triadic_census(G)

Determines the triadic census of a directed graph.

The triadic census is a count of how many of the 16 possible types of triads are present in a directed graph.

Parameters **G** *(digraph)* – A NetworkX DiGraph
Returns census – Dictionary with triad names as keys and number of occurrences as values.

Return type dict

Notes

This algorithm has complexity $O(m)$ where m is the number of edges in the graph.

References

4.42 Vitality

Vitality measures.

\[\text{closeness_vitality}(G[, \text{weight}]) \quad \text{Compute closeness vitality for nodes.}\]

4.42.1 closeness_vitality

closeness_vitality \((G, \text{weight}=\text{None})\)

Compute closeness vitality for nodes.

Closeness vitality of a node is the change in the sum of distances between all node pairs when excluding that node.

Parameters

- \text{G (graph)} –
- \text{weight (None or string (optional))} – The name of the edge attribute used as weight. If None the edge weights are ignored.

Returns nodes – Dictionary with nodes as keys and closeness vitality as the value.

Return type dictionary

Examples

```python
>>> G=nx.cycle_graph(3)
>>> nx.closeness_vitality(G)
{0: 4.0, 1: 4.0, 2: 4.0}
```

See also:

closeness_centrality()

References
Functional interface to graph methods and assorted utilities.

5.1 Graph

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree(G[, nbunch, weight])</td>
<td>Return degree of single node or of nbunch of nodes.</td>
</tr>
<tr>
<td>degree_histogram(G)</td>
<td>Return a list of the frequency of each degree value.</td>
</tr>
<tr>
<td>density(G)</td>
<td>Return the density of a graph.</td>
</tr>
<tr>
<td>info(G[, n])</td>
<td>Print short summary of information for the graph G or the node n.</td>
</tr>
<tr>
<td>create_empty_copy(G[, with_nodes])</td>
<td>Return a copy of the graph G with all of the edges removed.</td>
</tr>
<tr>
<td>is_directed(G)</td>
<td>Return True if graph is directed.</td>
</tr>
</tbody>
</table>

5.1.1 degree

degree(G, nbunch=None, weight=None)

Return degree of single node or of nbunch of nodes. If nbunch is omitted, then return degrees of all nodes.

5.1.2 degree_histogram

degree_histogram(G)

Return a list of the frequency of each degree value.

Parameters

- **G** (*Networkx graph*) – A graph

Returns

- **hist** – A list of frequencies of degrees. The degree values are the index in the list.

Return type

- list

Notes

Note: the bins are width one, hence len(list) can be large (Order(number_of_edges))

5.1.3 density

density(G)

Return the density of a graph.
The density for undirected graphs is

\[d = \frac{2m}{n(n - 1)} \]

and for directed graphs is

\[d = \frac{m}{n(n - 1)} \]

where \(n \) is the number of nodes and \(m \) is the number of edges in \(G \).

Notes

The density is 0 for a graph without edges and 1 for a complete graph. The density of multigraphs can be higher than 1.

Self loops are counted in the total number of edges so graphs with self loops can have density higher than 1.

5.1.4 info

info \((G, n=None)\)

Print short summary of information for the graph \(G \) or the node \(n \).

Parameters

- \(G \) (*Networkx graph*) – A graph
- \(n \) (*node (any hashable]*) – A node in the graph \(G \)

5.1.5 create_empty_copy

create_empty_copy \((G, with_nodes=True)\)

Return a copy of the graph \(G \) with all of the edges removed.

Parameters

- \(G \) (*graph*) – A NetworkX graph
- \(with_nodes \) (*bool (default=True]*) – Include nodes.

Notes

Graph, node, and edge data is not propagated to the new graph.

5.1.6 is_directed

is_directed \((G)\)

Return True if graph is directed.

5.2 Nodes
5.2.1 nodes

`nodes(G)`
Return a copy of the graph nodes in a list.

5.2.2 number_of_nodes

`number_of_nodes(G)`
Return the number of nodes in the graph.

5.2.3 nodes_iter

`nodes_iter(G)`
Return an iterator over the graph nodes.

5.2.4 all_neighbors

`all_neighbors(graph, node)`
Returns all of the neighbors of a node in the graph.
If the graph is directed returns predecessors as well as successors.

Parameters
- `graph` *(NetworkX graph)* – Graph to find neighbors.
- `node` *(node)* – The node whose neighbors will be returned.

Returns `neighbors` – Iterator of neighbors
Return type `iterator`

5.2.5 non_neighbors

`non_neighbors(graph, node)`
Returns the non-neighbors of the node in the graph.

Parameters
- `graph` *(NetworkX graph)* – Graph to find neighbors.
- `node` *(node)* – The node whose neighbors will be returned.

Returns `non_neighbors` – Iterator of nodes in the graph that are not neighbors of the node.
Return type `iterator`
5.2.6 common_neighbors

common_neighbors \((G, u, v)\)
Return the common neighbors of two nodes in a graph.

Parameters

- \(G\) (graph) – A NetworkX undirected graph.
- \(v\) (\(u\)) – Nodes in the graph.

Returns cnbors – Iterator of common neighbors of \(u\) and \(v\) in the graph.

Return type iterator

Raises NetworkXError – If \(u\) or \(v\) is not a node in the graph.

Examples

```python
>>> G = nx.complete_graph(5)
>>> sorted(nx.common_neighbors(G, 0, 1))
[2, 3, 4]
```

5.3 Edges

5.3.1 edges

edges \((G, nbunch=None)\)
Return list of edges incident to nodes in \(nbunch\).

Return all edges if \(nbunch\) is unspecified or \(nbunch=None\).

For digraphs, edges\(=\)out_edges

5.3.2 number_of_edges

number_of_edges \((G)\)
Return the number of edges in the graph.

5.3.3 edges_iter

edges_iter \((G, nbunch=None)\)
Return iterator over edges incident to nodes in \(nbunch\).

Return all edges if \(nbunch\) is unspecified or \(nbunch=None\).

For digraphs, edges\(=\)out_edges
5.3.4 non_edges

non_edges *(graph)*

Returns the non-existent edges in the graph.

Parameters
- graph *(NetworkX graph.)* – Graph to find non-existent edges.

Returns
- non_edges – Iterator of edges that are not in the graph.

Return type
- iterator

5.4 Attributes

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>set_node_attributes(G, name, values)</td>
<td>Set node attributes from dictionary of nodes and values</td>
</tr>
<tr>
<td>get_node_attributes(G, name)</td>
<td>Get node attributes from graph</td>
</tr>
<tr>
<td>set_edge_attributes(G, name, values)</td>
<td>Set edge attributes from dictionary of edge tuples and values.</td>
</tr>
<tr>
<td>get_edge_attributes(G, name)</td>
<td>Get edge attributes from graph</td>
</tr>
</tbody>
</table>

5.4.1 set_node_attributes

set_node_attributes *(G, name, values)*

Set node attributes from dictionary of nodes and values

Parameters
- G *(NetworkX Graph)* –
- name *(string)* – Attribute name
- values *(dict)* – Dictionary of attribute values keyed by node. If `values` is not a dictionary, then it is treated as a single attribute value that is then applied to every node in `G`.

Examples

```python
>>> G = nx.path_graph(3)
>>> bb = nx.betweenness_centrality(G)
>>> nx.set_node_attributes(G, 'betweenness', bb)
>>> G.node[1]['betweenness']
1.0
```

5.4.2 get_node_attributes

get_node_attributes *(G, name)*

Get node attributes from graph

Parameters
- G *(NetworkX Graph)* –
- name *(string)* – Attribute name

Returns
- Returns
 - *string* – Dictionary of attributes keyed by node.
Examples

```python
>>> G = nx.Graph()
>>> G.add_nodes_from([1, 2, 3], color='red')
>>> color = nx.get_node_attributes(G, 'color')
>>> color[1]
'red'
```

5.4.3 set_edge_attributes

set_edge_attributes (*G, name, values*)

Set edge attributes from dictionary of edge tuples and values.

Parameters

- **G** *(NetworkX Graph)*
- **name** *(string)* — Attribute name
- **values** *(dict)* — Dictionary of attribute values keyed by edge (tuple). For multigraphs, the keys tuples must be of the form (u, v, key). For non-multigraphs, the keys must be tuples of the form (u, v). If *values* is not a dictionary, then it is treated as a single attribute value that is then applied to every edge in *G*.

Examples

```python
>>> G = nx.path_graph(3)
>>> bb = nx.edge_betweenness_centrality(G, normalized=False)
>>> nx.set_edge_attributes(G, 'betweenness', bb)
>>> G[1][2]['betweenness']
2.0
```

5.4.4 get_edge_attributes

get_edge_attributes (*G, name*)

Get edge attributes from graph

Parameters

- **G** *(NetworkX Graph)*
- **name** *(string)* — Attribute name

Returns

- Dictionary of attributes keyed by edge. For (di)graphs, the keys are 2-tuples of the form (u, v). For multi(di)graphs, the keys are 3-tuples of the form (u, v, key).

Examples

```python
```
5.5 Freezing graph structure

freeze(G) Modify graph to prevent further change by adding or removing nodes or edges.

is_frozen(G) Return True if graph is frozen.

5.5.1 freeze

freeze(G)
Modify graph to prevent further change by adding or removing nodes or edges.
Node and edge data can still be modified.

G [graph] A NetworkX graph

Examples

```python
>>> G=nx.Graph()
>>> G.add_path([0,1,2,3])
>>> G=nx.freeze(G)
>>> try:
...     G.add_edge(4,5)
... except nx.NetworkXError as e:
...     print(str(e))
Frozen graph can't be modified
```

Notes

To “unfreeze” a graph you must make a copy by creating a new graph object:

```python
>>> graph = nx.path_graph(4)
>>> frozen_graph = nx.freeze(graph)
>>> unfrozen_graph = nx.Graph(frozen_graph)
>>> nx.is_frozen(unfrozen_graph)
False
```

See also:

is_frozen()

5.5.2 is_frozen

is_frozen(G)
Return True if graph is frozen.

G [graph] A NetworkX graph
See also:

freeze()
CHAPTER SIX

GRAPH GENERATORS

6.1 Atlas

Generators for the small graph atlas.

Because of its size, this module is not imported by default.

\[\text{graph_atlas_g}() \quad \text{Return the list} \quad [G0,G1,\ldots,G1252] \quad \text{of graphs as named in the Graph Atlas.} \]

6.1.1 graph_atlas_g

\text{graph_atlas_g}()

Return the list \([G0,G1,\ldots,G1252]\) of graphs as named in the Graph Atlas. \(G0,G1,\ldots,G1252\) are all graphs with up to 7 nodes.

The graphs are listed:

1. in increasing order of number of nodes;
2. for a fixed number of nodes, in increasing order of the number of edges;
3. for fixed numbers of nodes and edges, in increasing order of the degree sequence, for example 111223 < 112222;
4. for fixed degree sequence, in increasing number of automorphisms.

Note that indexing is set up so that for \(GAG=\text{graph_atlas_g}()\), then \(G123=GAG[123]\) and \(G[0]=\text{empty_graph}(0)\)

6.2 Classic

Generators for some classic graphs.

The typical graph generator is called as follows:

\[\text{G=nx.complete_graph(100)} \]

returning the complete graph on \(n\) nodes labeled \(0,\ldots,99\) as a simple graph. Except for \(\text{empty_graph}\), all the generators in this module return a Graph class (i.e. a simple, undirected graph).

\text{balanced_tree}(r, h[, create_using]) \quad \text{Return the perfectly balanced} \quad r \text{-tree of height} \quad h.
Table 6.2 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>barbell_graph(m1, m2[, create_using])</code></td>
<td>Return the Barbell Graph: two complete graphs connected by a path.</td>
</tr>
<tr>
<td><code>complete_graph(n[, create_using])</code></td>
<td>Return the complete graph K_n with n nodes.</td>
</tr>
<tr>
<td><code>complete_multipartite_graph(*block_sizes)</code></td>
<td>Returns the complete multipartite graph with the specified block sizes.</td>
</tr>
<tr>
<td><code>circular_ladder_graph(n[, create_using])</code></td>
<td>Return the circular ladder graph CL_n of length n.</td>
</tr>
<tr>
<td><code>cycle_graph(n[, create_using])</code></td>
<td>Return the cycle graph C_n over n nodes.</td>
</tr>
<tr>
<td><code>dorogovtsev_goltsev_mendes_graph(n[, ...])</code></td>
<td>Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.</td>
</tr>
<tr>
<td><code>empty_graph(n[, create_using])</code></td>
<td>Return the empty graph with n nodes and zero edges.</td>
</tr>
<tr>
<td><code>grid_2d_graph(m, n[, periodic, create_using])</code></td>
<td>Return the 2d grid graph of mxn nodes, each connected to its nearest neighbors.</td>
</tr>
<tr>
<td><code>grid_graph(dim[, periodic])</code></td>
<td>Return the n-dimensional grid graph.</td>
</tr>
<tr>
<td><code>hypercube_graph(n)</code></td>
<td>Return the n-dimensional hypercube.</td>
</tr>
<tr>
<td><code>ladder_graph(n[, create_using])</code></td>
<td>Return the Ladder graph of length n.</td>
</tr>
<tr>
<td><code>lollipop_graph(m, n[, create_using])</code></td>
<td>Return the Lollipop Graph; K_m connected to P_n.</td>
</tr>
<tr>
<td><code>null_graph([create_using])</code></td>
<td>Return the Null graph with no nodes or edges.</td>
</tr>
<tr>
<td><code>path_graph(n[, create_using])</code></td>
<td>Return the Path graph P_n of n nodes linearly connected by $n-1$ edges.</td>
</tr>
<tr>
<td><code>star_graph(n[, create_using])</code></td>
<td>Return the Star graph with $n+1$ nodes: one center node, connected to n outer nodes.</td>
</tr>
<tr>
<td><code>trivial_graph([create_using])</code></td>
<td>Return the Trivial graph with one node (with integer label 0) and no edges.</td>
</tr>
<tr>
<td><code>wheel_graph(n[, create_using])</code></td>
<td>Return the wheel graph: a single hub node connected to each node of the $(n-1)$-cycle.</td>
</tr>
</tbody>
</table>

6.2.1 balanced_tree

balanced_tree ($r, h, create_using=None$)

Return the perfectly balanced r-tree of height h.

Parameters

- r (*int*) – Branching factor of the tree
- h (*int*) – Height of the tree

create_using (*NetworkX graph type, optional*) – Use specified type to construct graph (default = `networkx.Graph`)

Returns G – A tree with n nodes

Return type *networkx Graph*

Notes

This is the rooted tree where all leaves are at distance h from the root. The root has degree r and all other internal nodes have degree $r+1$.

Node labels are the integers 0 (the root) up to number_of_nodes - 1.

Also referred to as a complete r-ary tree.

6.2.2 barbell_graph

barbell_graph ($ml, m2, create_using=None$)

Return the Barbell Graph: two complete graphs connected by a path.

For $ml > 1$ and $m2 >= 0$.

Two identical complete graphs $K_{\{ml\}}$ form the left and right bells, and are connected by a path $P_{\{m2\}}$. 372
The 2*m1+m2 nodes are numbered 0,...,m1-1 for the left barbell, m1,...,m1+m2-1 for the path, and m1+m2,...,2*m1+m2-1 for the right barbell.

The 3 subgraphs are joined via the edges (m1-1,m1) and (m1+m2-1,m1+m2). If m2=0, this is merely two complete graphs joined together.

This graph is an extremal example in David Aldous and Jim Fill’s etext on Random Walks on Graphs.

6.2.3 complete_graph

complete_graph (n, create_using=None)

Return the complete graph K_n with n nodes.

Node labels are the integers 0 to n-1.

6.2.4 complete_multipartite_graph

complete_multipartite_graph (*block_sizes)

Returns the complete multipartite graph with the specified block sizes.

Parameters block_sizes (tuple of integers) – The number of vertices in each block of the multipartite graph. The length of this tuple is the number of blocks.

Returns

G –

Returns the complete multipartite graph with the specified block sizes.

For each node, the node attribute 'block' is an integer indicating which block contains the node.

Return type NetworkX Graph

Examples

Creating a complete tripartite graph, with blocks of one, two, and three vertices, respectively.

```python
>>> import networkx as nx
>>> G = nx.complete_multipartite_graph(1, 2, 3)
>>> [G.node[u]['block'] for u in G]
[0, 1, 1, 2, 2, 2]
>>> G.edges(0)
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]
>>> G.edges(2)
[(2, 0), (2, 3), (2, 4), (2, 5)]
>>> G.edges(4)
[(4, 0), (4, 1), (4, 2)]
```

Notes

This function generalizes several other graph generator functions.

- If no block sizes are given, this returns the null graph.
- If a single block size n is given, this returns the empty graph on n nodes.
• If two block sizes \(m \) and \(n \) are given, this returns the complete bipartite graph on \(m + n \) nodes.

• If block sizes \(1 \) and \(n \) are given, this returns the star graph on \(n + 1 \) nodes.

See also:

\(\text{complete_bipartite_graph}() \)

6.2.5 circular_ladder_graph

circular_ladder_graph \((n, \text{create_using}=\text{None})\)

Return the circular ladder graph \(CL_n \) of length \(n \).

\(CL_n \) consists of two concentric \(n \)-cycles in which each of the \(n \) pairs of concentric nodes are joined by an edge.

Node labels are the integers 0 to \(n-1 \)

6.2.6 cycle_graph

cycle_graph \((n, \text{create_using}=\text{None})\)

Return the cycle graph \(C_n \) over \(n \) nodes.

\(C_n \) is the \(n \)-path with two end-nodes connected.

Node labels are the integers 0 to \(n-1 \) If \(\text{create_using} \) is a \(\text{DiGraph} \), the direction is in increasing order.

6.2.7 dorogovtsev_goltsev_mendes_graph

dorogovtsev_goltsev_mendes_graph \((n, \text{create_using}=\text{None})\)

Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.

\(n \) is the generation. See: arXiv:/cond-mat/0112143 by Dorogovtsev, Goltsev and Mendes.

6.2.8 empty_graph

empty_graph \((n=0, \text{create_using}=\text{None})\)

Return the empty graph with \(n \) nodes and zero edges.

Node labels are the integers 0 to \(n-1 \)

For example: >>> \(G=\text{nx.empty_graph}(10) \) >>> \(G.\text{number_of_nodes}() \) 10 >>> \(G.\text{number_of_edges}() \) 0

The variable \(\text{create_using} \) should point to a “graph”-like object that will be cleaned (nodes and edges will be removed) and refitted as an empty “graph” with \(n \) nodes with integer labels. This capability is useful for specifying the class-nature of the resulting empty “graph” (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.).

The variable \(\text{create_using} \) has two main uses: Firstly, the variable \(\text{create_using} \) can be used to create an empty digraph, network, etc. For example,

```python
>>> n=10
>>> G=nx.empty_graph(n,create_using=nx.DiGraph())
```

will create an empty digraph on \(n \) nodes.

Secondly, one can pass an existing graph (digraph, pseudograph, etc.) via \(\text{create_using} \). For example, if \(G \) is an existing graph (resp. digraph, pseudograph, etc.), then \(\text{empty_graph}(n,\text{create_using}=G) \) will empty \(G \) (i.e. delete all nodes and edges using \(G.\text{clear}() \) in base) and then add \(n \) nodes and zero edges, and return the modified graph (resp. digraph, pseudograph, etc.).
See also create_empty_copy(G).

6.2.9 grid_2d_graph

grid_2d_graph(m, n, periodic=False, create_using=None)

Return the 2d grid graph of m×n nodes, each connected to its nearest neighbors. Optional argument periodic=True will connect boundary nodes via periodic boundary conditions.

6.2.10 grid_graph

grid_graph(dim, periodic=False)

Return the n-dimensional grid graph.

The dimension is the length of the list ‘dim’ and the size in each dimension is the value of the list element.

E.g. G=grid_graph(dim=[2,3]) produces a 2x3 grid graph.

If periodic=True then join grid edges with periodic boundary conditions.

6.2.11 hypercube_graph

hypercube_graph(n)

Return the n-dimensional hypercube.

Node labels are the integers 0 to 2**n - 1.

6.2.12 ladder_graph

ladder_graph(n, create_using=None)

Return the Ladder graph of length n.

This is two rows of n nodes, with each pair connected by a single edge.

Node labels are the integers 0 to 2*n - 1.

6.2.13 lollipop_graph

lollipop_graph(m, n, create_using=None)

Return the Lollipop Graph; K_m connected to P_n.

This is the Barbell Graph without the right barbell.

For m>1 and n>=0, the complete graph K_m is connected to the path P_n. The resulting m+n nodes are labelled 0,...,m-1 for the complete graph and m,...,m+n-1 for the path. The 2 subgraphs are joined via the edge (m-1,m).

If n=0, this is merely a complete graph.

Node labels are the integers 0 to number_of_nodes - 1.

(This graph is an extremal example in David Aldous and Jim Fill’s etext on Random Walks on Graphs.)
6.2.14 null_graph

`null_graph(create_using=None)`

Return the Null graph with no nodes or edges.

See empty_graph for the use of create_using.

6.2.15 path_graph

`path_graph(n, create_using=None)`

Return the Path graph P_n of n nodes linearly connected by $n-1$ edges.

Node labels are the integers 0 to $n - 1$. If create_using is a DiGraph then the edges are directed in increasing order.

6.2.16 star_graph

`star_graph(n, create_using=None)`

Return the Star graph with $n+1$ nodes: one center node, connected to n outer nodes.

Node labels are the integers 0 to n.

6.2.17 trivial_graph

`trivial_graph(create_using=None)`

Return the Trivial graph with one node (with integer label 0) and no edges.

6.2.18 wheel_graph

`wheel_graph(n, create_using=None)`

Return the wheel graph: a single hub node connected to each node of the $(n-1)$-node cycle graph.

Node labels are the integers 0 to $n - 1$.

6.3 Expanders

Provides explicit constructions of expander graphs.

- `margulis_gabber_galil_graph(n[, create_using])` Return the Margulis-Gabber-Galil undirected MultiGraph on n^2 nodes.
- `chordal_cycle_graph(p[, create_using])` Return the chordal cycle graph on p nodes.

6.3.1 margulis_gabber_galil_graph

`margulis_gabber_galil_graph(n, create_using=None)`

Return the Margulis-Gabber-Galil undirected MultiGraph on n^2 nodes.

The undirected MultiGraph is regular with degree 8. Nodes are integer pairs. The second-largest eigenvalue of the adjacency matrix of the graph is at most $5\sqrt{2}$, regardless of n.

Parameters
• **n** (*int*) – Determines the number of nodes in the graph: \(n^2 \).

• **create_using** (*graph-like*) – A graph-like object that receives the constructed edges. If None, then a `MultiGraph` instance is used.

Returns G – The constructed undirected multigraph.

Return type graph

Raises `NetworkXError` – If the graph is directed or not a multigraph.

6.3.2 chordal_cycle_graph

chordal_cycle_graph \((p, \text{create_using}=\text{None})\)

Return the chordal cycle graph on \(p \) nodes.

The returned graph is a cycle graph on \(p \) nodes with chords joining each vertex \(x \) to its inverse modulo \(p \). This graph is a (mildly explicit) 3-regular expander.\(^1\)

\(p \) must be a prime number.

Parameters

• **\(p \) (a prime number)** – The number of vertices in the graph. This also indicates where the chordal edges in the cycle will be created.

• **create_using** (*graph-like*) – A graph-like object that receives the constructed edges. If None, then a `MultiGraph` instance is used.

Returns G – The constructed undirected multigraph.

Return type graph

Raises `NetworkXError` – If the graph provided in `create_using` is directed or not a multigraph.

References

6.4 Small

Various small and named graphs, together with some compact generators.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>make_small_graph</code> (graph_description[, ...])</td>
<td>Return the small graph described by graph_description.</td>
</tr>
<tr>
<td><code>LCF_graph</code> (n, shift_list, repeats[, create_using])</td>
<td>Return the cubic graph specified in LCF notation.</td>
</tr>
<tr>
<td><code>bull_graph</code> ([create_using])</td>
<td>Return the Bull graph.</td>
</tr>
<tr>
<td><code>chvatal_graph</code> ([create_using])</td>
<td>Return the Chvátal graph.</td>
</tr>
<tr>
<td><code>cubical_graph</code> ([create_using])</td>
<td>Return the 3-regular Platonic Cubical graph.</td>
</tr>
<tr>
<td><code>desargues_graph</code> ([create_using])</td>
<td>Return the Desargues graph.</td>
</tr>
<tr>
<td><code>diamond_graph</code> ([create_using])</td>
<td>Return the Diamond graph.</td>
</tr>
<tr>
<td><code>dodecahedral_graph</code> ([create_using])</td>
<td>Return the Platonic Dodecahedral graph.</td>
</tr>
<tr>
<td><code>frucht_graph</code> ([create_using])</td>
<td>Return the Frucht Graph.</td>
</tr>
<tr>
<td><code>heawood_graph</code> ([create_using])</td>
<td>Return the Heawood graph, a (3,6) cage.</td>
</tr>
<tr>
<td><code>house_graph</code> ([create_using])</td>
<td>Return the House graph (square with triangle on top).</td>
</tr>
</tbody>
</table>

Table 6.4 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>house_x_graph([create_using])</td>
<td>Return the House graph with a cross inside the house square.</td>
</tr>
<tr>
<td>icosahedral_graph([create_using])</td>
<td>Return the Platonic Icosahedral graph.</td>
</tr>
<tr>
<td>krackhardt_kite_graph([create_using])</td>
<td>Return the Krackhardt Kite Social Network.</td>
</tr>
<tr>
<td>moebius_kantor_graph([create_using])</td>
<td>Return the Moebius-Kantor graph.</td>
</tr>
<tr>
<td>octahedral_graph([create_using])</td>
<td>Return the Platonic Octahedral graph.</td>
</tr>
<tr>
<td>pappus_graph()</td>
<td>Return the Pappus graph.</td>
</tr>
<tr>
<td>petersen_graph([create_using])</td>
<td>Return the Petersen graph.</td>
</tr>
<tr>
<td>sedgewick_maze_graph([create_using])</td>
<td>Return a small maze with a cycle.</td>
</tr>
<tr>
<td>tetrahedral_graph([create_using])</td>
<td>Return the 3-regular Platonic Tetrahedral graph.</td>
</tr>
<tr>
<td>truncated_cube_graph([create_using])</td>
<td>Return the skeleton of the truncated cube.</td>
</tr>
<tr>
<td>truncated_tetrahedron_graph([create_using])</td>
<td>Return the skeleton of the truncated Platonic tetrahedron.</td>
</tr>
<tr>
<td>tutte_graph([create_using])</td>
<td>Return the Tutte graph.</td>
</tr>
</tbody>
</table>

6.4.1 make_small_graph

make_small_graph *(graph_description, create_using=None)*

Return the small graph described by graph_description.

graph_description is a list of the form [ltype, name, n, xlist]

Here ltype is one of “adjacencylist” or “edgelist”, name is the name of the graph and n the number of nodes. This constructs a graph of n nodes with integer labels 0,...,n-1.

If ltype=”adjacencylist” then xlist is an adjacency list with exactly n entries, in with the j'th entry (which can be empty) specifies the nodes connected to vertex j. e.g. the “square” graph C_4 can be obtained by

```python
>>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[1,3],[2,4],[1,3]]])
```

or, since we do not need to add edges twice,

```python
>>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[3],[4],[]]])
```

If ltype=”edgelist” then xlist is an edge list written as [[v1,w2],[v2,w2],...,[vk,wk]], where vj and wj integers in the range 1,...,n e.g. the “square” graph C_4 can be obtained by

```python
>>> G=nx.make_small_graph(["edgelist","C_4",4,[[1,2],[2,3],[3,4],[4,1]]])
```

Use the create_using argument to choose the graph class/type.

6.4.2 LCF_graph

LCF_graph *(n, shift_list, repeats, create_using=None)*

Return the cubic graph specified in LCF notation.

LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed notation used in the generation of various cubic Hamiltonian graphs of high symmetry. See, for example, dodecahedral_graph, desargues_graph, heawood_graph and pappus_graph below.

* n (number of nodes) The starting graph is the n-cycle with nodes 0,...,n-1. (The null graph is returned if n < 0.)

shift_list = [s1,s2,...,sk], a list of integer shifts mod n,

repeats integer specifying the number of times that shifts in shift_list are successively applied to each v_current in the n-cycle to generate an edge between v_current and v_current+shift mod n.
For v1 cycling through the n-cycle a total of k*repeats with shift cycling through shiftlist repeats times connect
v1 with v1+shift mod n

The utility graph K_{3,3}

```python
>>> G=nx.LCF_graph(6,[3,-3],3)
```

The Heawood graph

```python
>>> G=nx.LCF_graph(14,[5,-5],7)
```

See http://mathworld.wolfram.com/LCFNotation.html for a description and references.

6.4.3 bull_graph

bull_graph (create_using=None)

Return the Bull graph.

6.4.4 chvatal_graph

chvatal_graph (create_using=None)

Return the Chvátal graph.

6.4.5 cubical_graph

cubical_graph (create_using=None)

Return the 3-regular Platonic Cubical graph.

6.4.6 desargues_graph

desargues_graph (create_using=None)

Return the Desargues graph.

6.4.7 diamond_graph

diamond_graph (create_using=None)

Return the Diamond graph.

6.4.8 dodecahedral_graph

dodecahedral_graph (create_using=None)

Return the Platonic Dodecahedral graph.

6.4.9 frucht_graph

frucht_graph (create_using=None)

Return the Frucht Graph.

The Frucht Graph is the smallest cubical graph whose automorphism group consists only of the identity element.
6.4.10 heawood_graph

heawood_graph(create_using=None)
 Return the Heawood graph, a (3,6) cage.

6.4.11 house_graph

house_graph(create_using=None)
 Return the House graph (square with triangle on top).

6.4.12 house_x_graph

house_x_graph(create_using=None)
 Return the House graph with a cross inside the house square.

6.4.13 icosahedral_graph

icosahedral_graph(create_using=None)
 Return the Platonic Icosahedral graph.

6.4.14 krackhardt_kite_graph

krackhardt_kite_graph(create_using=None)
 Return the Krackhardt Kite Social Network.
 A 10-actor social network introduced by David Krackhardt to illustrate: degree, betweenness, centrality, closeness, etc. The traditional labeling is: Andre=1, Beverley=2, Carol=3, Diane=4, Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10.

6.4.15 moebius_kantor_graph

moebius_kantor_graph(create_using=None)
 Return the Moebius-Kantor graph.

6.4.16 octahedral_graph

octahedral_graph(create_using=None)
 Return the Platonic Octahedral graph.

6.4.17 pappus_graph

pappus_graph()
 Return the Pappus graph.

6.4.18 petersen_graph

petersen_graph(create_using=None)
 Return the Petersen graph.
6.4.19 sedgewick_maze_graph

sedgewick_maze_graph *(create_using=None)*

Return a small maze with a cycle.

This is the maze used in Sedgewick, 3rd Edition, Part 5, Graph Algorithms, Chapter 18, e.g. Figure 18.2 and following. Nodes are numbered 0,...,7

6.4.20 tetrahedral_graph

tetrahedral_graph *(create_using=None)*

Return the 3-regular Platonic Tetrahedral graph.

6.4.21 truncated_cube_graph

truncated_cube_graph *(create_using=None)*

Return the skeleton of the truncated cube.

6.4.22 truncated_tetrahedron_graph

truncated_tetrahedron_graph *(create_using=None)*

Return the skeleton of the truncated Platonic tetrahedron.

6.4.23 tutte_graph

tutte_graph *(create_using=None)*

Return the Tutte graph.

6.5 Random Graphs

Generators for random graphs.

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fast_gnp_random_graph(n, p[, seed, directed])</td>
<td>Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or a binomial graph.</td>
</tr>
<tr>
<td>gnp_random_graph(n, p[, seed, directed])</td>
<td>Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or a binomial graph.</td>
</tr>
<tr>
<td>dense_gnm_random_graph(n, m[, seed])</td>
<td>Returns a $G_{n,m}$ random graph.</td>
</tr>
<tr>
<td>gnm_random_graph(n, m[, seed, directed])</td>
<td>Returns a $G_{n,m}$ random graph.</td>
</tr>
<tr>
<td>erdos_renyi_graph(n, p[, seed, directed])</td>
<td>Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or a binomial graph.</td>
</tr>
<tr>
<td>binomial_graph(n, p[, seed, directed])</td>
<td>Returns a $G_{n,p}$ random graph, also known as an Erdős-Rényi graph or a binomial graph.</td>
</tr>
<tr>
<td>newman_watts_strogatz_graph(n, k, p[, seed])</td>
<td>Returns a Newman–Watts–Strogatz small-world graph.</td>
</tr>
<tr>
<td>watts_strogatz_graph(n, k, p[, seed])</td>
<td>Returns a Watts–Strogatz small-world graph.</td>
</tr>
<tr>
<td>connected_watts_strogatz_graph(n, k, p[, ...])</td>
<td>Returns a connected Watts–Strogatz small-world graph.</td>
</tr>
<tr>
<td>random_regular_graph(d, n[, seed])</td>
<td>Returns a random d-regular graph on n nodes.</td>
</tr>
<tr>
<td>barabasi_albert_graph(n, m[, seed])</td>
<td>Returns a random graph according to the Barabási–Albert preferential attachment model.</td>
</tr>
<tr>
<td>powerlaw_cluster_graph(n, m, p[, seed])</td>
<td>Holme and Kim algorithm for growing graphs with powerlaw degree distribution.</td>
</tr>
<tr>
<td>duplication_divergence_graph(n, p[, seed])</td>
<td>Returns a random graph using the duplication-divergence model.</td>
</tr>
<tr>
<td>random_lobster(n, p1, p2[, seed])</td>
<td>Returns a random lobster graph.</td>
</tr>
<tr>
<td>random_shell_graph(constructor[, seed])</td>
<td>Returns a random shell graph for the constructor given.</td>
</tr>
<tr>
<td>random_powerlaw_tree(n[, gamma, seed, tries])</td>
<td>Returns a tree with a power law degree distribution.</td>
</tr>
</tbody>
</table>

6.5. Random Graphs

381
6.5.1 fast_gnp_random_graph

fast_gnp_random_graph \((n, p, seed=None, directed=False)\)

Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or a binomial graph.

Parameters

- **n** (int) – The number of nodes.
- **p** (float) – Probability for edge creation.
- **seed** (int, optional) – Seed for random number generator (default=None).
- **directed** (bool, optional (default=False)) – If True, this function returns a directed graph.

Notes

The \(G_{n,p}\) graph algorithm chooses each of the \([n(n-1)]/2\) (undirected) or \(n(n-1)\) (directed) possible edges with probability \(p\).

This algorithm runs in \(O(n + m)\) time, where \(m\) is the expected number of edges, which equals \(pn(n-1)/2\). This should be faster than **gnp_random_graph()** when \(p\) is small and the expected number of edges is small (that is, the graph is sparse).

See also:

gnp_random_graph()

References

6.5.2 gnp_random_graph

gnp_random_graph \((n, p, seed=None, directed=False)\)

Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or a binomial graph.

The \(G_{n,p}\) model chooses each of the possible edges with probability \(p\).

The functions **binomial_graph()** and **erdos_renyi_graph()** are aliases of this function.

Parameters

- **n** (int) – The number of nodes.
- **p** (float) – Probability for edge creation.
- **seed** (int, optional) – Seed for random number generator (default=None).
- **directed** (bool, optional (default=False)) – If True, this function returns a directed graph.

See also:

fast_gnp_random_graph()
Notes

This algorithm runs in \(O(n^2) \) time. For sparse graphs (that is, for small values of \(p \)), \texttt{fast_gnp_random_graph()} is a faster algorithm.

References

6.5.3 dense_gnm_random_graph

dense_gnm_random_graph \((n, m, \text{seed=\text{None}})\)

Returns a \(G_{n,m} \) random graph.

In the \(G_{n,m} \) model, a graph is chosen uniformly at random from the set of all graphs with \(n \) nodes and \(m \) edges.

This algorithm should be faster than \texttt{gnm_random_graph()} for dense graphs.

Parameters

- \textit{n} (\text{int}) – The number of nodes.
- \textit{m} (\text{int}) – The number of edges.
- \textit{seed} (\text{int, optional}) – Seed for random number generator (default=None).

See also:

\texttt{gnm_random_graph()}

Notes

Algorithm by Keith M. Briggs Mar 31, 2006. Inspired by Knuth’s Algorithm S (Selection sampling technique), in section 3.4.2 of \(^2\).

References

6.5.4 gnm_random_graph

gnm_random_graph \((n, m, \text{seed=\text{None}}, \text{directed=\text{False}})\)

Returns a \(G_{n,m} \) random graph.

In the \(G_{n,m} \) model, a graph is chosen uniformly at random from the set of all graphs with \(n \) nodes and \(m \) edges.

This algorithm should be faster than \texttt{dense_gnm_random_graph()} for sparse graphs.

Parameters

- \textit{n} (\text{int}) – The number of nodes.
- \textit{m} (\text{int}) – The number of edges.
- \textit{seed} (\text{int, optional}) – Seed for random number generator (default=None).
- \textit{directed} (\text{bool, optional (default=\text{False})}) – If True return a directed graph

See also:

\texttt{dense_gnm_random_graph()}

6.5.5 erdos_renyi_graph

erdos_renyi_graph \((n, p, seed=None, directed=False)\)

Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or a binomial graph.

The \(G_{n,p}\) model chooses each of the possible edges with probability \(p\).

The functions `binomial_graph()` and `erdos_renyi_graph()` are aliases of this function.

Parameters

- \(n\) (int) – The number of nodes.
- \(p\) (float) – Probability for edge creation.
- \(seed\) (int, optional) – Seed for random number generator (default=None).
- \(directed\) (bool, optional (default=False)) – If True, this function returns a directed graph.

See also:

`fast_gnp_random_graph()`

Notes

This algorithm runs in \(O(n^2)\) time. For sparse graphs (that is, for small values of \(p\)), `fast_gnp_random_graph()` is a faster algorithm.

6.5.6 binomial_graph

binomial_graph \((n, p, seed=None, directed=False)\)

Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or a binomial graph.

The \(G_{n,p}\) model chooses each of the possible edges with probability \(p\).

The functions `binomial_graph()` and `erdos_renyi_graph()` are aliases of this function.

Parameters

- \(n\) (int) – The number of nodes.
- \(p\) (float) – Probability for edge creation.
- \(seed\) (int, optional) – Seed for random number generator (default=None).
- \(directed\) (bool, optional (default=False)) – If True, this function returns a directed graph.

See also:

`fast_gnp_random_graph()`

Notes

This algorithm runs in \(O(n^2)\) time. For sparse graphs (that is, for small values of \(p\)), `fast_gnp_random_graph()` is a faster algorithm.
6.5.7 **newman_watts_strogatz_graph**

`newman_watts_strogatz_graph(n, k, p, seed=None)`

Parameters

- **n** *(int)* – The number of nodes.
- **k** *(int)* – Each node is joined with its \(k \) nearest neighbors in a ring topology.
- **p** *(float)* – The probability of adding a new edge for each edge.
- **seed** *(int, optional)* – The seed for the random number generator (the default is `None`).

Notes

First create a ring over \(n \) nodes. Then each node in the ring is connected with its \(k \) nearest neighbors (or \(k - 1 \) neighbors if \(k \) is odd). Then shortcuts are created by adding new edges as follows: for each edge \((u, v)\) in the underlying “\(n\)-ring with \(k \) nearest neighbors” with probability \(p \) add a new edge \((u, w)\) with randomly-chosen existing node \(w \). In contrast with `watts_strogatz_graph()`, no edges are removed.

See also:

`watts_strogatz_graph()`

6.5.8 **watts_strogatz_graph**

`watts_strogatz_graph(n, k, p, seed=None)`

Return a Watts–Strogatz small-world graph.

Parameters

- **n** *(int)* – The number of nodes
- **k** *(int)* – Each node is joined with its \(k \) nearest neighbors in a ring topology.
- **p** *(float)* – The probability of rewiring each edge
- **seed** *(int, optional)* – Seed for random number generator (default=None)

See also:

`newman_watts_strogatz_graph(), connected_watts_strogatz_graph()`

Notes

First create a ring over \(n \) nodes. Then each node in the ring is joined to its \(k \) nearest neighbors (or \(k - 1 \) neighbors if \(k \) is odd). Then shortcuts are created by replacing some edges as follows: for each edge \((u, v)\) in the underlying “\(n\)-ring with \(k \) nearest neighbors” with probability \(p \) replace it with a new edge \((u, w)\) with uniformly random choice of existing node \(w \).
In contrast with `newman_watts_strogatz_graph()`, the random rewiring does not increase the number of edges. The rewired graph is not guaranteed to be connected as in `connected_watts_strogatz_graph()`.

References

6.5.9 `connected_watts_strogatz_graph`

`connected_watts_strogatz_graph(n, k, p, tries=100, seed=None)`

Returns a connected Watts–Strogatz small-world graph.

Attempts to generate a connected graph by repeated generation of Watts–Strogatz small-world graphs. An exception is raised if the maximum number of tries is exceeded.

Parameters

- `n (int)` – The number of nodes
- `k (int)` – Each node is joined with its k nearest neighbors in a ring topology.
- `p (float)` – The probability of rewiring each edge
- `tries (int)` – Number of attempts to generate a connected graph.
- `seed (int, optional)` – The seed for random number generator.

See also:

`newman_watts_strogatz_graph()`, `watts_strogatz_graph()`

6.5.10 `random_regular_graph`

`random_regular_graph(d, n, seed=None)`

Returns a random d-regular graph on n nodes.

The resulting graph has no self-loops or parallel edges.

Parameters

- `d (int)` – The degree of each node.
- `n (integer)` – The number of nodes. The value of n * d must be even.
- `seed (hashable object)` – The seed for random number generator.

Notes

The nodes are numbered from 0 to n – 1.

Kim and Vu’s paper 3 shows that this algorithm samples in an asymptotically uniform way from the space of random graphs when d = O(n^{1/3-ε}).

Raises `NetworkXError` – If n + d is odd or d is greater than or equal to n.

6.5.11 barabasi_albert_graph

barabasi_albert_graph *(n, m, seed=None)*

Returns a random graph according to the Barabási–Albert preferential attachment model.

A graph of \(n \) nodes is grown by attaching new nodes each with \(m \) edges that are preferentially attached to existing nodes with high degree.

Parameters

- **n** *(int)* – Number of nodes
- **m** *(int)* – Number of edges to attach from a new node to existing nodes
- **seed** *(int, optional)* – Seed for random number generator (default=None).

Returns
Graph

Return type
Graph

Raises
NetworkXError – If \(m \) does not satisfy \(1 \leq m < n \).

References

6.5.12 powerlaw_cluster_graph

powerlaw_cluster_graph *(n, m, p, seed=None)*

Holme and Kim algorithm for growing graphs with powerlaw degree distribution and approximate average clustering.

Parameters

- **n** *(int)* – the number of nodes
- **m** *(int)* – the number of random edges to add for each new node
- **p** *(float,)* – Probability of adding a triangle after adding a random edge
- **seed** *(int, optional)* – Seed for random number generator (default=None).

Notes

The average clustering has a hard time getting above a certain cutoff that depends on \(m \). This cutoff is often quite low. The transitivity (fraction of triangles to possible triangles) seems to decrease with network size.

It is essentially the Barabási–Albert (BA) growth model with an extra step that each random edge is followed by a chance of making an edge to one of its neighbors too (and thus a triangle).

This algorithm improves on BA in the sense that it enables a higher average clustering to be attained if desired.

It seems possible to have a disconnected graph with this algorithm since the initial \(m \) nodes may not be all linked to a new node on the first iteration like the BA model.

Raises
NetworkXError – If \(m \) does not satisfy \(1 \leq m \leq n \) or \(p \) does not satisfy \(0 \leq p \leq 1 \).
6.5.13 duplication_divergence_graph

duplication_divergence_graph \((n, p, \text{seed}=\text{None}) \)

Returns an undirected graph using the duplication-divergence model.

A graph of \(n \) nodes is created by duplicating the initial nodes and retaining edges incident to the original nodes with a retention probability \(p \).

Parameters

- \(n \) (int) – The desired number of nodes in the graph.
- \(p \) (float) – The probability for retaining the edge of the replicated node.
- seed (int, optional) – A seed for the random number generator of random (default=None).

Returns \(G \)

Return type Graph

Raises NetworkXError – If \(p \) is not a valid probability. If \(n \) is less than 2.

6.5.14 random_lobster

random_lobster \((n, p1, p2, \text{seed}=\text{None}) \)

Returns a random lobster graph.

A lobster is a tree that reduces to a caterpillar when pruning all leaf nodes. A caterpillar is a tree that reduces to a path graph when pruning all leaf nodes; setting \(p2 \) to zero produces a caterpillar.

Parameters

- \(n \) (int) – The expected number of nodes in the backbone
- \(p1 \) (float) – Probability of adding an edge to the backbone
- \(p2 \) (float) – Probability of adding an edge one level beyond backbone
- seed (int, optional) – Seed for random number generator (default=None).

6.5.15 random_shell_graph

random_shell_graph \(\text{constructor}, \text{seed}=\text{None} \)

Returns a random shell graph for the constructor given.

Parameters

- constructor (list of three-tuples) – Represents the parameters for a shell, starting at the center shell. Each element of the list must be of the form \((n, m, d)\), where \(n \) is the number of nodes in the shell, \(m \) is the number of edges in the shell, and \(d \) is the ratio of inter-shell (next) edges to intra-shell edges. If \(d \) is zero, there will be no intra-shell edges, and if \(d \) is one there will be all possible intra-shell edges.
- seed (int, optional) – Seed for random number generator (default=None).
Examples

```python
>>> constructor = [(10, 20, 0.8), (20, 40, 0.8)]
>>> G = nx.random_shell_graph(constructor)
```

6.5.16 random_powerlaw_tree

`random_powerlaw_tree(n, gamma=3, seed=None, tries=100)`

Returns a tree with a power law degree distribution.

Parameters

- `n (int)` – The number of nodes.
- `gamma (float)` – Exponent of the power law.
- `seed (int, optional)` – Seed for random number generator (default=None).
- `tries (int)` – Number of attempts to adjust the sequence to make it a tree.

Raises NetworkXError – If no valid sequence is found within the maximum number of attempts.

Notes

A trial power law degree sequence is chosen and then elements are swapped with new elements from a powerlaw distribution until the sequence makes a tree (by checking, for example, that the number of edges is one smaller than the number of nodes).

6.5.17 random_powerlaw_tree_sequence

`random_powerlaw_tree_sequence(n, gamma=3, seed=None, tries=100)`

Returns a degree sequence for a tree with a power law distribution.

Parameters

- `n (int)` – The number of nodes.
- `gamma (float)` – Exponent of the power law.
- `seed (int, optional)` – Seed for random number generator (default=None).
- `tries (int)` – Number of attempts to adjust the sequence to make it a tree.

Raises NetworkXError – If no valid sequence is found within the maximum number of attempts.

Notes

A trial power law degree sequence is chosen and then elements are swapped with new elements from a powerlaw distribution until the sequence makes a tree (by checking, for example, that the number of edges is one smaller than the number of nodes).

6.6 Degree Sequence

Generate graphs with a given degree sequence or expected degree sequence.
configuration_model(deg_sequence[, ...]) Return a random graph with the given degree sequence.

directed_configuration_model(...[, ...]) Return a directed_random graph with the given degree sequences.

expected_degree_graph(w[, seed, selfloops]) Return a random graph with given expected degrees.

havel_hakimi_graph(deg_sequence[, create_using]) Return a simple graph with given degree sequence constructed using the Havel-Hakimi algorithm.

directed_havel_hakimi_graph(in_deg_sequence, ...) Return a directed graph with the given degree sequences.

degree_sequence_tree(deg_sequence[, ...]) Make a tree for the given degree sequence.

random_degree_sequence_graph(sequence[, ...]) Return a simple random graph with the given degree sequence.

6.6.1 configuration_model

configuration_model (deg_sequence, create_using=None, seed=None)

Return a random graph with the given degree sequence.

The configuration model generates a random pseudograph (graph with parallel edges and self loops) by randomly assigning edges to match the given degree sequence.

Parameters

- deg_sequence (list of integers) – Each list entry corresponds to the degree of a node.
- create_using (graph, optional (default MultiGraph)) – Return graph of this type. The instance will be cleared.
- seed (hashable object, optional) – Seed for random number generator.

Returns G – A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence.

Return type MultiGraph

Raises NetworkXError – If the degree sequence does not have an even sum.

See also:

is_valid_degree_sequence()

Notes

As described by Newman 4.

A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the degree sequence does not have an even sum.

This configuration model construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn’t have the exact degree sequence specified.

The density of self-loops and parallel edges tends to decrease as the number of nodes increases. However, typically the number of self-loops will approach a Poisson distribution with a nonzero mean, and similarly for the number of parallel edges. Consider a node with k stubs. The probability of being joined to another stub of the same node is basically (k-1)/N where k is the degree and N is the number of nodes. So the probability of a self-loop scales like c/N for some constant c. As N grows, this means we expect c self-loops. Similarly for parallel edges.

NetworkX Reference, Release 1.10

References

Examples

```python
>>> from networkx.utils import powerlaw_sequence
>>> z=nx.utils.create_degree_sequence(100,powerlaw_sequence)
>>> G=nx.configuration_model(z)
```

To remove parallel edges:

```python
>>> G=nx.Graph(G)
```

To remove self loops:

```python
>>> G.remove_edges_from(G.selfloop_edges())
```

6.6.2 directed_configuration_model

directed_configuration_model(in_degree_sequence, out_degree_sequence, create_using=None, seed=None)

Return a directed_random graph with the given degree sequences.

The configuration model generates a random directed pseudograph (graph with parallel edges and self loops) by randomly assigning edges to match the given degree sequences.

Parameters

* in_degree_sequence (list of integers) – Each list entry corresponds to the in-degree of a node.
* out_degree_sequence (list of integers) – Each list entry corresponds to the out-degree of a node.
* create_using (graph, optional (default MultiDiGraph)) – Return graph of this type. The instance will be cleared.
* seed (hashable object, optional) – Seed for random number generator.

Returns G – A graph with the specified degree sequences. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence.

Return type MultiDiGraph

Raises NetworkXError – If the degree sequences do not have the same sum.

See also:

configuration_model()

Notes

Algorithm as described by Newman.

A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the degree sequences does not have the same sum.

This configuration model construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn’t have the exact degree sequence specified. This “finite-size effect” decreases as the size of the graph increases.

References

Examples

```python
>>> D=nx.DiGraph([(0,1),(1,2),(2,3)]) # directed path graph
>>> din=list(D.in_degree().values())
>>> dout=list(D.out_degree().values())
>>> din.append(1)
>>> dout[0]=2
>>> D=nx.directed_configuration_model(din,dout)
```

To remove parallel edges:

```python
>>> D=nx.DiGraph(D)
```

To remove self loops:

```python
>>> D.remove_edges_from(D.selfloop_edges())
```

6.6.3 expected_degree_graph

```python
expected_degree_graph (w, seed=None, selfloops=True)
```

Return a random graph with given expected degrees. Given a sequence of expected degrees \(W = (w_0, w_1, \ldots, w_{n-1}) \) of length \(n \) this algorithm assigns an edge between node \(u \) and node \(v \) with probability

\[
p_{uv} = \frac{w_u w_v}{\sum_k w_k}.
\]

Parameters

- **\(w \) (list)** – The list of expected degrees.
- **selfloops (bool (default=True))** – Set to False to remove the possibility of self-loop edges.
- **seed (hashable object, optional)** – The seed for the random number generator.

Returns

Return type **Graph**

Examples

```python
>>> z=[10 for i in range(100)]
>>> G=nx.expected_degree_graph(z)
```
Notes

The nodes have integer labels corresponding to index of expected degrees input sequence.
The complexity of this algorithm is $\mathcal{O}(n + m)$ where n is the number of nodes and m is the expected number of edges.
The model in ⁶ includes the possibility of self-loop edges. Set selfloops=False to produce a graph without self loops.
For finite graphs this model doesn’t produce exactly the given expected degree sequence. Instead the expected degrees are as follows.
For the case without self loops (selfloops=False),

$$E[\text{deg}(u)] = \sum_{v \neq u} p_{uv} = w_u \left(1 - \frac{w_u}{\sum_k w_k} \right).$$

NetworkX uses the standard convention that a self-loop edge counts 2 in the degree of a node, so with self loops (selfloops=True),

$$E[\text{deg}(u)] = \sum_{v \neq u} p_{uv} + 2p_{uu} = w_u \left(1 + \frac{w_u}{\sum_k w_k} \right).$$

References

6.6.4 havel_hakimi_graph

havel_hakimi_graph (deg_sequence, create_using=None)

Return a simple graph with given degree sequence constructed using the Havel-Hakimi algorithm.

Parameters

- **deg_sequence** (list of integers) – Each integer corresponds to the degree of a node (need not be sorted).
- **create_using** (graph, optional (default Graph)) – Return graph of this type. The instance will be cleared. Directed graphs are not allowed.

Raises NetworkXException – For a non-graphical degree sequence (i.e. one not realizable by some simple graph).

Notes

The Havel-Hakimi algorithm constructs a simple graph by successively connecting the node of highest degree to other nodes of highest degree, resorting remaining nodes by degree, and repeating the process. The resulting graph has a high degree-associativity. Nodes are labeled 1,..., len(deg_sequence), corresponding to their position in deg_sequence.

The basic algorithm is from Hakimi ⁷ and was generalized by Kleitman and Wang ⁸.

6.6.5 directed_havel_hakimi_graph

directed_havel_hakimi_graph\(\text{(in_deg_sequence, out_deg_sequence, create_using=None)} \)

Return a directed graph with the given degree sequences.

Parameters

- **in_deg_sequence** *(list of integers)* – Each list entry corresponds to the in-degree of a node.
- **out_deg_sequence** *(list of integers)* – Each list entry corresponds to the out-degree of a node.
- **create_using** *(graph, optional (default DiGraph))* – Return graph of this type. The instance will be cleared.

Returns \(G \) – A graph with the specified degree sequences. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence

Return type DiGraph

Raises NetworkXError – If the degree sequences are not digraphical.

See also:

configuration_model()

Notes

Algorithm as described by Kleitman and Wang.\(^9\)

References

6.6.6 degree_sequence_tree

degree_sequence_tree\(\text{(deg_sequence, create_using=None)} \)

Make a tree for the given degree sequence.

A tree has #nodes-#edges=1 so the degree sequence must have \(\text{len(deg_sequence)} - \frac{\text{sum(deg_sequence)}}{2} = 1 \)

6.6.7 random_degree_sequence_graph

random_degree_sequence_graph\(\text{(sequence, seed=None, tries=10)} \)

Return a simple random graph with the given degree sequence.

If the maximum degree \(d_m \) in the sequence is \(O(m^{1/4}) \) then the algorithm produces almost uniform random graphs in \(O(md_m) \) time where \(m \) is the number of edges.

Parameters

- **sequence** *(list of integers)* – Sequence of degrees
- **seed** *(hashable object, optional)* – Seed for random number generator

• **tries** (*int, optional*) – Maximum number of tries to create a graph

Returns
G – A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in the sequence.

Return type
Graph

Raises

• NetworkXUnfeasible – If the degree sequence is not graphical.

• NetworkXError – If a graph is not produced in specified number of tries

See also:

`is_valid_degree_sequence()`, `configuration_model()`

Notes

The generator algorithm is not guaranteed to produce a graph.

References

Moshen Bayati, Jeong Han Kim, and Amin Saberi, A sequential algorithm for generating random graphs. Algorithmica, Volume 58, Number 4, 860-910, DOI: 10.1007/s00453-009-9340-1

Examples

```python
>>> sequence = [1, 2, 2, 3]
>>> G = nx.random_degree_sequence_graph(sequence)
>>> sorted(G.degree().values())
[1, 2, 2, 3]
```

6.7 Random Clustered

Generate graphs with given degree and triangle sequence.

`random_clustered_graph(joint_degree_sequence)`
Generate a random graph with the given joint independent edge degree and triangle degree sequence.

6.7.1 random_clustered_graph

`random_clustered_graph (joint_degree_sequence, create_using=None, seed=None)`
Generate a random graph with the given joint independent edge degree and triangle degree sequence.

This uses a configuration model-like approach to generate a random graph (with parallel edges and self-loops) by randomly assigning edges to match the given joint degree sequence.

The joint degree sequence is a list of pairs of integers of the form $[(d_{1,1}, i_{1,1}), \ldots, (d_{n,t}, i_{n,t})]$. According to this list, vertex u is a member of $d_{u,t}$ triangles and has $d_{u,i}$ other edges. The number $d_{u,i}$ is the **triangle degree** of u and the number $d_{u,t}$ is the **independent edge degree**.

Parameters

10 Moshen Bayati, Jeong Han Kim, and Amin Saberi, A sequential algorithm for generating random graphs. Algorithmica, Volume 58, Number 4, 860-910, DOI: 10.1007/s00453-009-9340-1
• **joint_degree_sequence** *(list of integer pairs)* – Each list entry corresponds to the independent edge degree and triangle degree of a node.

• **create_using** *(graph, optional (default MultiGraph))* – Return graph of this type. The instance will be cleared.

• **seed** *(hashable object, optional)* – The seed for the random number generator.

Returns *G* – A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence.

Return type *MultiGraph*

Raises NetworkXError – If the independent edge degree sequence sum is not even or the triangle degree sequence sum is not divisible by 3.

Notes

As described by Miller11 (see also Newman12 for an equivalent description).

A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the independent degree sequence does not have an even sum or the triangle degree sequence sum is not divisible by 3.

This configuration model-like construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn’t have the exact degree sequence specified. This “finite-size effect” decreases as the size of the graph increases.

References

Examples

```python
>>> deg = [(1, 0), (1, 0), (1, 0), (2, 0), (1, 0), (2, 1), (0, 1), (0, 1)]
>>> G = nx.random_clustered_graph(deg)
```

To remove parallel edges:

```python
>>> G = nx.Graph(G)
```

To remove self loops:

```python
>>> G.remove_edges_from(G.selfloop_edges())
```

6.8 Directed

Generators for some directed graphs, including growing network (GN) graphs and scale-free graphs.

- **gn_graph** *(n[, kernel, create_using, seed])* Return the growing network (GN) digraph with n nodes.

- **gnr_graph** *(n, p[, create_using, seed])* Return the growing network with redirection (GNR) digraph with n nodes and redirection probability p.

- **gnc_graph** *(n[, create_using, seed])* Return the growing network with copying (GNC) digraph with n nodes.

- **scale_free_graph** *(n[, alpha, beta, gamma, ...])* Returns a scale-free directed graph.

11 Joel C. Miller. “Percolation and epidemics in random clustered networks”. In: Physical review. E, Statistical, nonlinear, and soft matter physics 80 (2 Part 1 August 2009).

6.8.1 gn_graph

gn_graph (n, kernel=None, create_using=None, seed=None)
Return the growing network (GN) digraph with n nodes.

The GN graph is built by adding nodes one at a time with a link to one previously added node. The target node for the link is chosen with probability based on degree. The default attachment kernel is a linear function of the degree of a node.

The graph is always a (directed) tree.

Parameters

- **n** (*int*) – The number of nodes for the generated graph.
- **kernel** (*function*) – The attachment kernel.
- **create_using** (*graph*, *optional* (*default* *DiGraph*)) – Return graph of this type. The instance will be cleared.
- **seed** (*hashable object, optional*) – The seed for the random number generator.

Examples

To create the undirected GN graph, use the to_directed() method:

```plaintext
>>> D = nx.gn_graph(10)  # the GN graph
>>> G = D.to_undirected()  # the undirected version
```

To specify an attachment kernel, use the kernel keyword argument:

```plaintext
>>> D = nx.gn_graph(10, kernel=lambda x: x ** 1.5)  # A_k = k^1.5
```

References

6.8.2 gnr_graph

gnr_graph (n, p, create_using=None, seed=None)
Return the growing network with redirection (GNR) digraph with n nodes and redirection probability p.

The GNR graph is built by adding nodes one at a time with a link to one previously added node. With probability p the link is instead “redirected” to the successor node of the target.

The graph is always a (directed) tree.

Parameters

- **n** (*int*) – The number of nodes for the generated graph.
- **p** (*float*) – The redirection probability.
- **create_using** (*graph*, *optional* (*default* *DiGraph*)) – Return graph of this type. The instance will be cleared.
- **seed** (*hashable object, optional*) – The seed for the random number generator.
Examples

To create the undirected GNR graph, use the `to_directed()` method:

```python
>>> D = nx.gnr_graph(10, 0.5)  # the GNR graph
>>> G = D.to_undirected()       # the undirected version
```

References

6.8.3 `gnr_graph`

`gnr_graph(n, create_using=None, seed=None)`

Return the growing network with copying (GNC) digraph with `n` nodes.

The GNC graph is built by adding nodes one at a time with a link to one previously added node (chosen uniformly at random) and to all of that node’s successors.

Parameters

- `n` *(int)* – The number of nodes for the generated graph.
- `create_using` *(graph, optional (default DiGraph))* – Return graph of this type. The instance will be cleared.
- `seed` *(hashable object, optional)* – The seed for the random number generator.

References

6.8.4 `scale_free_graph`

`scale_free_graph(n, alpha=0.41, beta=0.54, gamma=0.05, delta_in=0.2, delta_out=0, create_using=None, seed=None)`

Returns a scale-free directed graph.

Parameters

- `n` *(integer)* – Number of nodes in graph
- `alpha` *(float)* – Probability for adding a new node connected to an existing node chosen randomly according to the in-degree distribution.
- `beta` *(float)* – Probability for adding an edge between two existing nodes. One existing node is chosen randomly according the in-degree distribution and the other chosen randomly according to the out-degree distribution.
- `gamma` *(float)* – Probability for adding a new node connected to an existing node chosen randomly according to the out-degree distribution.
- `delta_in` *(float)* – Bias for choosing nodes from in-degree distribution.
- `delta_out` *(float)* – Bias for choosing nodes from out-degree distribution.
- `create_using` *(graph, optional (default MultiDiGraph))* – Use this graph instance to start the process (default=3-cycle).
- `seed` *(integer, optional)* – Seed for random number generator
Examples

Create a scale-free graph on one hundred nodes:

```python
>>> G = nx.scale_free_graph(100)
```

Notes

The sum of α, β, and γ must be 1.

References

6.9 Geometric

Generators for geometric graphs.

- `random_geometric_graph(n, radius[, dim, pos])` Returns a random geometric graph in the unit cube.
- `geographical_threshold_graph(n, theta[, ...])` Returns a geographical threshold graph.
- `waxman_graph(n[, alpha, beta, L, domain])` Return a Waxman random graph.
- `navigable_small_world_graph(n[, p, q, r, ...])` Return a navigable small-world graph.

6.9.1 random_geometric_graph

`random_geometric_graph(n, radius, dim=2, pos=None)`

Returns a random geometric graph in the unit cube. The random geometric graph model places n nodes uniformly at random in the unit cube. Two nodes are joined by an edge if the Euclidean distance between the nodes is at most $radius$.

Parameters

- n (int) – Number of nodes
- $radius$ (float) – Distance threshold value
- dim (int, optional) – Dimension of graph
- pos (dict, optional) – A dictionary keyed by node with node positions as values.

Returns

Return type: Graph

Examples

Create a random geometric graph on twenty nodes where nodes are joined by an edge if their distance is at most 0.1:

```python
>>> G = nx.random_geometric_graph(20, 0.1)
```
Notes

This algorithm currently only supports Euclidean distance.
This uses an $O(n^2)$ algorithm to build the graph. A faster algorithm is possible using k-d trees.
The `pos` keyword argument can be used to specify node positions so you can create an arbitrary distribution and domain for positions.

For example, to use a 2D Gaussian distribution of node positions with mean (0, 0) and standard deviation 2:

```python
>>> import random
>>> n = 20
>>> p = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)}
>>> G = nx.random_geometric_graph(n, 0.2, pos=p)
```

References

6.9.2 geographical_threshold_graph

`geographical_threshold_graph`\((n, \theta, \alpha=2, d=2, \text{pos}=\text{None}, \text{weight}=\text{None}) \)

Returns a geographical threshold graph.

The geographical threshold graph model places \(n\) nodes uniformly at random in a rectangular domain. Each node \(u\) is assigned a weight \(w_u\). Two nodes \(u\) and \(v\) are joined by an edge if

\[w_u + w_v \geq \theta r^\alpha \]

where \(r\) is the Euclidean distance between \(u\) and \(v\), and \(\theta, \alpha\) are parameters.

Parameters

- \(n\) (int) – Number of nodes
- \(\theta\) (float) – Threshold value
- \(\alpha\) (float, optional) – Exponent of distance function
- \(d\) (int, optional) – Dimension of graph
- \(\text{pos}\) (dict) – Node positions as a dictionary of tuples keyed by node.
- \(\text{weight}\) (dict) – Node weights as a dictionary of numbers keyed by node.

Returns

Return type: Graph

Examples

```python
>>> G = nx.geographical_threshold_graph(20, 50)
```

Notes

If weights are not specified they are assigned to nodes by drawing randomly from the exponential distribution with rate parameter \(\lambda = 1\). To specify weights from a different distribution, use the `weight` keyword argument:
>>> import random
>>> n = 20
>>> w = {i: random.expovariate(5.0) for i in range(n)}
>>> G = nx.geographical_threshold_graph(20, 50, weight=w)

If node positions are not specified they are randomly assigned from the uniform distribution.

References

6.9.3 waxman_graph

waxman_graph (n, alpha=0.4, beta=0.1, L=None, domain=(0, 0, 1, 1))

Return a Waxman random graph.

The Waxman random graph model places n nodes uniformly at random in a rectangular domain. Each pair of nodes at Euclidean distance \(d\) is joined by an edge with probability

\[p = \alpha \exp(-d/\beta L). \]

This function implements both Waxman models, using the L keyword argument.

- Waxman-1: if \(L\) is not specified, it is set to be the maximum distance between any pair of nodes.
- Waxman-2: if \(L\) is specified, the distance between a pair of nodes is chosen uniformly at random from the interval \([0, L]\).

Parameters

- \(n\) (int) – Number of nodes
- \(alpha\) (float) – Model parameter
- \(beta\) (float) – Model parameter
- \(L\) (float, optional) – Maximum distance between nodes. If not specified, the actual distance is calculated.
- \(domain\) (four-tuple of numbers, optional) – Domain size, given as a tuple of the form \((x_{min}, y_{min}, x_{max}, y_{max})\).

Returns \(G\)

Return type Graph

References

6.9.4 navigable_small_world_graph

navigable_small_world_graph (n, p=1, q=1, r=2, dim=2, seed=None)

Return a navigable small-world graph.

A navigable small-world graph is a directed grid with additional long-range connections that are chosen randomly.

[... we begin with a set of nodes [...] that are identified with the set of lattice points in an nimesn square, \(\{(i, j) : i \in \{1, 2, \ldots, n\}, j \in \{1, 2, \ldots, n\}\}\), and we define the lattice distance between two nodes \((i, j)\) and \((k, l)\) to be the number of “lattice steps” separating them: \(d((i, j), (k, l)) = |k - i| + |l - j|\). For a universal constant \(p \geq 1\), the node \(u\) has a directed edge to every other node within...]

6.9. Geometric
lattice distance \(p \) — these are its local contacts. For universal constants \(q \geq 0 \) and \(r \geq 0 \) we also construct directed edges from \(u \) to \(q \) other nodes (the long-range contacts) using independent random trials; the \(i \)th directed edge from \(u \) has endpoint \(v \) with probability proportional to \([d(u, v)]^{-r} \).

Parameters

- \(n \) (int) – The number of nodes.
- \(p \) (int) – The diameter of short range connections. Each node is joined with every other node within this lattice distance.
- \(q \) (int) – The number of long-range connections for each node.
- \(r \) (float) – Exponent for decaying probability of connections. The probability of connecting to a node at lattice distance \(d \) is \(1/d^r \).
- \(\text{dim} \) (int) – Dimension of grid
- \(\text{seed} \) (int, optional) – Seed for random number generator (default=None).

References

6.10 Line Graph

Functions for generating line graphs.

\[
\text{line_graph}(G[, \text{create}_\text{using}]) \quad \text{Returns the line graph of the graph or digraph } G.
\]

6.10.1 line_graph

\text{line_graph} (G, \text{create}_\text{using}=\text{None})

Returns the line graph of the graph or digraph \(G \).

The line graph of a graph \(G \) has a node for each edge in \(G \) and an edge joining those nodes if the two edges in \(G \) share a common node. For directed graphs, nodes are adjacent exactly when the edges they represent form a directed path of length two.

The nodes of the line graph are 2-tuples of nodes in the original graph (or 3-tuples for multigraphs, with the key of the edge as the third element).

For information about self-loops and more discussion, see the Notes section below.

Parameters \(G \) (graph) – A NetworkX Graph, DiGraph, MultiGraph, or MultiDiGraph.

Returns \(L \) – The line graph of \(G \).

Return type graph

Examples

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]

\[\]
>>> import networkx as nx
>>> G = nx.star_graph(3)
>>> L = nx.line_graph(G)
>>> print(sorted(map(sorted, L.edges()))) # makes a 3-clique, K3
[[[0, 1], [0, 2]], [[0, 1], [0, 3]], [[0, 2], [0, 3]]]

Notes

Graph, node, and edge data are not propagated to the new graph. For undirected graphs, the nodes in G must be sortable, otherwise the constructed line graph may not be correct.

Self-loops in undirected graphs

For an undirected graph G without multiple edges, each edge can be written as a set $\{u, v\}$. Its line graph L has the edges of G as its nodes. If x and y are two nodes in L, then $\{x, y\}$ is an edge in L if and only if the intersection of x and y is nonempty. Thus, the set of all edges is determined by the set of all pairwise intersections of edges in G.

Trivially, every edge in G would have a nonzero intersection with itself, and so every node in L should have a self-loop. This is not so interesting, and the original context of line graphs was with simple graphs, which had no self-loops or multiple edges. The line graph was also meant to be a simple graph and thus, self-loops in L are not part of the standard definition of a line graph. In a pairwise intersection matrix, this is analogous to excluding the diagonal entries from the line graph definition.

Self-loops and multiple edges in G add nodes to L in a natural way, and do not require any fundamental changes to the definition. It might be argued that the self-loops we excluded before should now be included. However, the self-loops are still “trivial” in some sense and thus, are usually excluded.

Self-loops in directed graphs

For a directed graph G without multiple edges, each edge can be written as a tuple (u, v). Its line graph L has the edges of G as its nodes. If x and y are two nodes in L, then (x, y) is an edge in L if and only if the tail of x matches the head of y, for example, if $x = (a, b)$ and $y = (b, c)$ for some vertices a, b, and c in G.

Due to the directed nature of the edges, it is no longer the case that every edge in G should have a self-loop in L. Now, the only time self-loops arise is if a node in G itself has a self-loop. So such self-loops are no longer “trivial” but instead, represent essential features of the topology of G. For this reason, the historical development of line digraphs is such that self-loops are included. When the graph G has multiple edges, once again only superficial changes are required to the definition.

References

6.11 Ego Graph

Ego graph.

```
ego_graph(G, nl, radius, center, ...))  # Returns induced subgraph of neighbors centered at node n within a given radius.
```
6.11.1 ego_graph

ego_graph \((G, n, radius=1, center=True, undirected=False, distance=None)\)

Returns induced subgraph of neighbors centered at node \(n\) within a given radius.

Parameters

- **\(G\) (graph)** – A NetworkX Graph or DiGraph
- **\(n\) (node)** – A single node
- **radius (number, optional)** – Include all neighbors of distance<=radius from \(n\).
- **center (bool, optional)** – If False, do not include center node in graph
- **undirected (bool, optional)** – If True use both in- and out-neighbors of directed graphs.
- **distance (key, optional)** – Use specified edge data key as distance. For example, setting distance='weight' will use the edge weight to measure the distance from the node \(n\).

Notes

For directed graphs \(D\) this produces the “out” neighborhood or successors. If you want the neighborhood of predecessors first reverse the graph with \(D.reverse()\). If you want both directions use the keyword argument undirected=True.

Node, edge, and graph attributes are copied to the returned subgraph.

6.12 Stochastic

Functions for generating stochastic graphs from a given weighted directed graph.

stochastic_graph \((G[, copy, weight])\) Returns a right-stochastic representation of the directed graph \(G\).

6.12.1 stochastic_graph

stochastic_graph \((G, copy=True, weight='weight')\)

Returns a right-stochastic representation of the directed graph \(G\).

A right-stochastic graph is a weighted digraph in which for each node, the sum of the weights of all the out-edges of that node is 1. If the graph is already weighted (for example, via a 'weight' edge attribute), the reweighting takes that into account.

- **\(G\) [directed graph]** A NetworkX DiGraph
- **copy [boolean, optional]** If this is True, then this function returns a new instance of networkx.DiGraph. Otherwise, the original graph is modified in-place (and also returned, for convenience).
- **weight [edge attribute key (optional, default='weight')]** Edge attribute key used for reading the existing weight and setting the new weight. If no attribute with this key is found for an edge, then the edge weight is assumed to be 1. If an edge has a weight, it must be a a positive number.
6.13 Intersection

Generators for random intersection graphs.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>uniform_random_intersection_graph(n, m, p[, ...])</code></td>
<td>Return a uniform random intersection graph.</td>
</tr>
<tr>
<td><code>k_random_intersection_graph(n, m, k)</code></td>
<td>Return a intersection graph with randomly chosen attribute sets for each node.</td>
</tr>
<tr>
<td><code>general_random_intersection_graph(n, m, p)</code></td>
<td>Return a random intersection graph with independent probabilities for connections between nodes and attributes.</td>
</tr>
</tbody>
</table>

6.13.1 `uniform_random_intersection_graph`

Function: `uniform_random_intersection_graph(n, m, p, seed=None)`

- **Return**: A uniform random intersection graph.

 Parameters
 - `n` (*int*) – The number of nodes in the first bipartite set (nodes)
 - `m` (*int*) – The number of nodes in the second bipartite set (attributes)
 - `p` (*float*) – Probability of connecting nodes between bipartite sets
 - `seed` (*int, optional*) – Seed for random number generator (default=None).

 See also:
 - `gnp_random_graph()`

6.13.2 `k_random_intersection_graph`

Function: `k_random_intersection_graph(n, m, k)`

- **Return**: An intersection graph with randomly chosen attribute sets for each node that are of equal size (k).

 Parameters
 - `n` (*int*) – The number of nodes in the first bipartite set (nodes)
 - `m` (*int*) – The number of nodes in the second bipartite set (attributes)
 - `k` (*float*) – Size of attribute set to assign to each node.
 - `seed` (*int, optional*) – Seed for random number generator (default=None).

 See also:
 - `gnp_random_graph()`, `uniform_random_intersection_graph()`

6.13.3 `general_random_intersection_graph`

Function: `general_random_intersection_graph(n, m, p)`

- **Return**: A random intersection graph with independent probabilities for connections between node and attribute sets.

 Parameters

6.13. Intersection 405
• **n** (*int*) – The number of nodes in the first bipartite set (nodes)
• **m** (*int*) – The number of nodes in the second bipartite set (attributes)
• **p** (*list of floats of length m*) – Probabilities for connecting nodes to each attribute
• **seed** (*int, optional*) – Seed for random number generator (default=None).

See also:
```
gnp_random_graph(), uniform_random_intersection_graph()
```

References

6.14 Social Networks

Famous social networks.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>karate_club_graph()</td>
<td>Return Zachary’s Karate Club graph.</td>
</tr>
<tr>
<td>davis_southern_women_graph()</td>
<td>Return Davis Southern women social network.</td>
</tr>
<tr>
<td>florentine_families_graph()</td>
<td>Return Florentine families graph.</td>
</tr>
</tbody>
</table>

6.14.1 karate_club_graph

`karate_club_graph()`
Return Zachary’s Karate Club graph.

Each node in the returned graph has a node attribute ‘club’ that indicates the name of the club to which the member represented by that node belongs, either ‘Mr. Hi’ or ‘Officer’.

Examples

To get the name of the club to which a node belongs:
```
>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> G.node[5]['club']
'Mr. Hi'
>>> G.node[9]['club']
'Officer'
```

References

6.14.2 davis_southern_women_graph

`davis_southern_women_graph()`
Return Davis Southern women social network.

This is a bipartite graph.
6.14.3 florentine_families_graph

florentine_families_graph()

Return Florentine families graph.

References

6.15 Community

Generators for classes of graphs used in studying social networks.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>caveman_graph(l, k)</td>
<td>Returns a caveman graph of l cliques of size k.</td>
</tr>
<tr>
<td>connected_caveman_graph(l, k)</td>
<td>Returns a connected caveman graph of l cliques of size k.</td>
</tr>
<tr>
<td>relaxed_caveman_graph(l, k, p[, seed])</td>
<td>Return a relaxed caveman graph.</td>
</tr>
<tr>
<td>random_partition_graph(sizes, p_in, p_out[, ...])</td>
<td>Return the random partition graph with a partition of sizes.</td>
</tr>
<tr>
<td>planted_partition_graph(l, k, p_in, p_out[, ...])</td>
<td>Return the planted l-partition graph.</td>
</tr>
<tr>
<td>gaussian_random_partition_graph(n, s, v, ...)</td>
<td>Generate a Gaussian random partition graph.</td>
</tr>
</tbody>
</table>

6.15.1 caveman_graph

caveman_graph(l, k)

Returns a caveman graph of l cliques of size k.

Parameters

- l (int) – Number of cliques
- k (int) – Size of cliques

Returns G – caveman graph

Return type NetworkX Graph

Notes

This returns an undirected graph, it can be converted to a directed graph using nx.to_directed(), or a multigraph using nx.MultiGraph(nx.caveman_graph(l, k)). Only the undirected version is described in 14 and it is unclear which of the directed generalizations is most useful.

Examples

```python
>>> G = nx.caveman_graph(3, 3)
```

See also:

connected_caveman_graph()

References

6.15.2 connected_caveman_graph

connected_caveman_graph \((l, k)\)

Returns a connected caveman graph of \(l\) cliques of size \(k\).

The connected caveman graph is formed by creating \(n\) cliques of size \(k\), then a single edge in each clique is rewired to a node in an adjacent clique.

Parameters

- \(l\) \((\text{int})\) – number of cliques
- \(k\) \((\text{int})\) – size of cliques

Returns \(G\) – connected caveman graph

Return type NetworkX Graph

Notes

This returns an undirected graph, it can be converted to a directed graph using `nx.to_directed()`, or a multigraph using `nx.MultiGraph(nx.caveman_graph(l, k))`. Only the undirected version is described in \(^{15}\) and it is unclear which of the directed generalizations is most useful.

Examples

```python
>>> G = nx.connected_caveman_graph(3, 3)
```

References

6.15.3 relaxed_caveman_graph

relaxed_caveman_graph \((l, k, p, seed=None)\)

Return a relaxed caveman graph.

A relaxed caveman graph starts with \(l\) cliques of size \(k\). Edges are then randomly rewired with probability \(p\) to link different cliques.

Parameters

- \(l\) \((\text{int})\) – Number of groups
- \(k\) \((\text{int})\) – Size of cliques
- \(p\) \((\text{float})\) – Probability of rewiring each edge.
- \(seed\) \((\text{int,optional})\) – Seed for random number generator(default=None)

Returns \(G\) – Relaxed Caveman Graph

Return type NetworkX Graph

Raises NetworkXError – If \(p\) is not in \([0,1]\)

Examples

```python
>>> G = nx.relaxed_caveman_graph(2, 3, 0.1, seed=42)
```

References

6.15.4 random_partition_graph

`random_partition_graph(sizes, p_in, p_out, seed=None, directed=False)`

Return the random partition graph with a partition of sizes.

A partition graph is a graph of communities with sizes defined by s in sizes. Nodes in the same group are connected with probability p_in and nodes of different groups are connected with probability p_out.

Parameters

- `sizes` (list of ints) – Sizes of groups
- `p_in` (float) – Probability of edges with in groups
- `p_out` (float) – Probability of edges between groups
- `directed` (boolean optional, default=False) – Whether to create a directed graph
- `seed` (int optional, default None) – A seed for the random number generator

Returns `G` – Random partition graph of size sum(gs)

Return type NetworkX Graph or DiGraph

Raises `NetworkXError` – If p_in or p_out is not in [0,1]

Examples

```python
>>> G = nx.random_partition_graph([10,10,10],.25,.01)
```

Notes

This is a generalization of the planted-l-partition described in 16. It allows for the creation of groups of any size. The partition is stored as a graph attribute ‘partition’.

References

6.15.5 planted_partition_graph

`planted_partition_graph(l, k, p_in, p_out, seed=None, directed=False)`

Return the planted l-partition graph.

This model partitions a graph with $n=l \cdot k$ vertices in l groups with k vertices each. Vertices of the same group are linked with a probability p_{in}, and vertices of different groups are linked with probability p_{out}.

Parameters

- **l** *(int)* – Number of groups
- **k** *(int)* – Number of vertices in each group
- **p_{in}** *(float)* – Probability of connecting vertices within a group
- **p_{out}** *(float)* – Probability of connected vertices between groups
- **seed** *(int, optional)* – Seed for random number generator (default=None)
- **directed** *(bool, optional)* – If True return a directed graph

Returns

- G – planted l-partition graph

Return type

- NetworkX Graph or DiGraph

Raises

- NetworkXError – If p_{in}, p_{out} are not in [0,1] or

Examples

```python
>>> G = nx.planted_partition_graph(4, 3, 0.5, 0.1, seed=42)
```

See also:

- random_partition_model()

References

6.15.6 gaussian_random_partition_graph

gaussian_random_partition_graph(n, s, v, p_{in}, p_{out}, directed=False, seed=None)

Generate a Gaussian random partition graph.

A Gaussian random partition graph is created by creating k partitions each with a size drawn from a normal distribution with mean s and variance s/v. Nodes are connected within clusters with probability p_{in} and between clusters with probability p_{out}.

Parameters

- **n** *(int)* – Number of nodes in the graph
- **s** *(float)* – Mean cluster size
- **v** *(float)* – Shape parameter. The variance of cluster size distribution is s/v.
- **p_{in}** *(float)* – Probability of intra cluster connection.
- **p_{out}** *(float)* – Probability of inter cluster connection.
- **directed** *(bool, optional)* – Whether to create a directed graph or not
- **seed** *(int)* – Seed value for random number generator

Returns

- G – gaussian random partition graph

Return type

- NetworkX Graph or DiGraph

Raises

- NetworkXError – If s is $> n$ or p_{in} or p_{out} is not in [0,1]
Notes

Note the number of partitions is dependent on s,v and n, and that the last partition may be considerably smaller, as it is sized to simply fill out the nodes [1]

See also:

random_partition_graph()

Examples

```python
>>> G = nx.gaussian_random_partition_graph(100,10,10,.25,.1)
>>> len(G)
100
```

References

6.16 Non Isomorphic Trees

Implementation of the Wright, Richmond, Odlyzko and McKay (WROM) algorithm for the enumeration of all non-isomorphic free trees of a given order. Rooted trees are represented by level sequences, i.e., lists in which the i-th element specifies the distance of vertex i to the root.

<table>
<thead>
<tr>
<th>nonisomorphic_trees(order[, create])</th>
<th>Returns a list of nonisomorphic trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>number_of_nonisomorphic_trees(order)</td>
<td>Returns the number of nonisomorphic trees</td>
</tr>
</tbody>
</table>

6.16.1 nonisomorphic_trees

nonisomorphic_trees(order, create='graph')

Returns a list of nonisomorphic trees

Parameters

- order (int) – order of the desired tree(s)
- create (graph or matrix (default=’Graph’) – If graph is selected a list of trees will be returned, if matrix is selected a list of adjacency matrix will be returned

Returns

- G (List of NetworkX Graphs)
- M (List of Adjacency matrices)

References

6.16.2 number_of_nonisomorphic_trees

number_of_nonisomorphic_trees(order)

Returns the number of nonisomorphic trees

Parameters order (int) – order of the desired tree(s)
Returns length

Return type Number of nonisomorphic graphs for the given order

References
7.1 Graph Matrix

Adjacency matrix and incidence matrix of graphs.

\[
\text{adjacency_matrix}(G[, \text{nodelist}, \text{weight}]) \quad \text{Return adjacency matrix of } G.
\]

\[
\text{incidence_matrix}(G[, \text{nodelist}, \text{edgelist}, ...]) \quad \text{Return incidence matrix of } G.
\]

7.1.1 adjacency_matrix

\[
\text{adjacency_matrix}(G, \text{nodelist}=\text{None}, \text{weight}=\text{'weight'})
\]

Return adjacency matrix of G.

Parameters

- \(G\) (graph) – A NetworkX graph
- \text{nodelist} (list, optional) – The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
- \text{weight} (string or None, optional (default=\text{'weight'}) – The edge data key used to provide each value in the matrix. If None, then each edge has weight 1.

Returns \(A\) – Adjacency matrix representation of G.

Return type SciPy sparse matrix

Notes

For directed graphs, entry i,j corresponds to an edge from i to j.

If you want a pure Python adjacency matrix representation try networkx.convert.to_dict_of_dicts which will return a dictionary-of-dictionaries format that can be addressed as a sparse matrix.

For MultiGraph/MultiDiGraph with parallel edges the weights are summed. See to_numpy_matrix for other options.

The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the edge weight attribute (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Scipy sparse matrix can be modified as follows:

```python
>>> import scipy as sp
>>> G = nx.Graph([(1,1)])
>>> A = nx.adjacency_matrix(G)
```
>>> print(A.todense())
[[1]]
>>> A.setdiag(A.diagonal()*2)
>>> print(A.todense())
[[2]]

See also:
to_numpy_matrix(), to_scipy_sparse_matrix(), to_dict_of_dicts()

7.1.2 incidence_matrix

incidence_matrix *(G, nodelist=None, edgelist=None, oriented=False, weight=None)*

Return incidence matrix of G.

The incidence matrix assigns each row to a node and each column to an edge. For a standard incidence matrix a 1 appears wherever a row’s node is incident on the column’s edge. For an oriented incidence matrix each edge is assigned an orientation (arbitrarily for undirected and aligning to direction for directed). A -1 appears for the tail of an edge and 1 for the head of the edge. The elements are zero otherwise.

Parameters

- **G** *(graph)* – A NetworkX graph
- **nodelist** *(list, optional (default= all nodes in G))* – The rows are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
- **edgelist** *(list, optional (default= all edges in G))* – The columns are ordered according to the edges in edgelist. If edgelist is None, then the ordering is produced by G.edges().
- **oriented** *(bool, optional (default=False))* – If True, matrix elements are +1 or -1 for the head or tail node respectively of each edge. If False, +1 occurs at both nodes.
- **weight** *(string or None, optional (default=None))* – The edge data key used to provide each value in the matrix. If None, then each edge has weight 1. Edge weights, if used, should be positive so that the orientation can provide the sign.

Returns **A** – The incidence matrix of G.

Return type SciPy sparse matrix

Notes

For MultiGraph/MultiDiGraph, the edges in edgelist should be (u,v,key) 3-tuples.

“Networks are the best discrete model for so many problems in applied mathematics” 1.

References

7.2 Laplacian Matrix

Laplacian matrix of graphs.

laplacian_matrix *(G[, nodelist, weight])* Return the Laplacian matrix of G.

Table 7.2 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>normalized_laplacian_matrix</code></td>
<td>Return the normalized Laplacian matrix of G.</td>
</tr>
<tr>
<td><code>directed_laplacian_matrix</code></td>
<td>Return the directed Laplacian matrix of G.</td>
</tr>
</tbody>
</table>

7.2.1 laplacian_matrix

`laplacian_matrix(G, nodelist=None, weight='weight')`

Return the Laplacian matrix of G.

The graph Laplacian is the matrix $L = D - A$, where A is the adjacency matrix and D is the diagonal matrix of node degrees.

Parameters

- **G** (graph) – A NetworkX graph
- **nodelist** (list, optional) – The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
- **weight** (string or None, optional (default='weight')) – The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.

Returns L – The Laplacian matrix of G.

Return type SciPy sparse matrix

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed.

See also:
- `to_numpy_matrix()`, `normalized_laplacian_matrix()`

7.2.2 normalized_laplacian_matrix

`normalized_laplacian_matrix(G, nodelist=None, weight='weight')`

Return the normalized Laplacian matrix of G.

The normalized graph Laplacian is the matrix

$$N = D^{-1/2}LD^{-1/2}$$

where L is the graph Laplacian and D is the diagonal matrix of node degrees.

Parameters

- **G** (graph) – A NetworkX graph
- **nodelist** (list, optional) – The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
- **weight** (string or None, optional (default='weight')) – The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.

Returns N – The normalized Laplacian matrix of G.

Return type NumPy matrix

7.2. Laplacian Matrix 415
Notes

For MultiGraph/MultiDiGraph, the edges weights are summed. See `to_numpy_matrix` for other options.
If the Graph contains selfloops, D is defined as `diag(sum(A,1))`, where A is the adjacency matrix.

See also:

`laplacian_matrix()`

References

7.2.3 directed_laplacian_matrix

directed_laplacian_matrix(G, nodelist=None, weight='weight', walk_type=None, alpha=0.95)

Return the directed Laplacian matrix of G.

The graph directed Laplacian is the matrix

\[L = I - \left(\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2} \right) / 2 \]

where \(I \) is the identity matrix, \(P \) is the transition matrix of the graph, and \(\Phi \) a matrix with the Perron vector of \(P \) in the diagonal and zeros elsewhere.

Depending on the value of `walk_type`, \(P \) can be the transition matrix induced by a random walk, a lazy random walk, or a random walk with teleportation (PageRank).

Parameters

- `G` (DiGraph) – A NetworkX graph
- `nodelist` (list, optional) – The rows and columns are ordered according to the nodes in `nodelist`. If `nodelist` is None, then the ordering is produced by `G.nodes()`.
- `weight` (string or None, optional (default='weight')) – The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.
- `walk_type` (string or None, optional (default=None)) – If None, \(P \) is selected depending on the properties of the graph. Otherwise is one of ‘random’, ‘lazy’, or ‘pagerank’
- `alpha` (real) – (1 - alpha) is the teleportation probability used with pagerank

Returns \(L \) – Normalized Laplacian of G.

Return type NumPy array

Raises

- `NetworkXError` – If NumPy cannot be imported
- `NetworkXNotImplemented` – If G is not a DiGraph

Notes

Only implemented for DiGraphs

See also:

`laplacian_matrix()`

References

7.3 Spectrum

Eigenvalue spectrum of graphs.

\begin{align*}
\text{laplacian_spectrum}(G[, \text{weight}]) & \quad \text{Return eigenvalues of the Laplacian of } G \\
\text{adjacency_spectrum}(G[, \text{weight}]) & \quad \text{Return eigenvalues of the adjacency matrix of } G.
\end{align*}

7.3.1 laplacian_spectrum

\textbf{laplacian_spectrum}(G, \text{weight}='weight')

Return eigenvalues of the Laplacian of \(G \)

Parameters

- *G* (\text{graph}) – A NetworkX graph
- *weight* (\text{string or None, optional (default='weight')}) – The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.

Returns

- **evals** – Eigenvalues

Return type

NumPy array

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options.

See also:

\text{laplacian_matrix}()

7.3.2 adjacency_spectrum

\textbf{adjacency_spectrum}(G, \text{weight}='weight')

Return eigenvalues of the adjacency matrix of \(G \).

Parameters

- *G* (\text{graph}) – A NetworkX graph
- *weight* (\text{string or None, optional (default='weight')}) – The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.

Returns

- **evals** – Eigenvalues

Return type

NumPy array

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options.

See also:

\text{adjacency_matrix}()
7.4 Algebraic Connectivity

Algebraic connectivity and Fiedler vectors of undirected graphs.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>algebraic_connectivity(G[, weight, ...])</code></td>
<td>Return the algebraic connectivity of an undirected graph.</td>
</tr>
<tr>
<td><code>fiedler_vector(G[, weight, normalized, tol, ...])</code></td>
<td>Return the Fiedler vector of a connected undirected graph.</td>
</tr>
<tr>
<td><code>spectral_ordering(G[, weight, normalized, ...])</code></td>
<td>Compute the spectral_ordering of a graph.</td>
</tr>
</tbody>
</table>

7.4.1 algebraic_connectivity

`algebraic_connectivity (G, weight='weight', normalized=False, tol=1e-08, method='tracemin')`

Return the algebraic connectivity of an undirected graph.

The algebraic connectivity of a connected undirected graph is the second smallest eigenvalue of its Laplacian matrix.

Parameters

- **G** (*NetworkX graph*) – An undirected graph.
- **weight** (*object, optional*) – The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None.
- **normalized** (*bool, optional*) – Whether the normalized Laplacian matrix is used. Default value: False.
- **method** (*string, optional*) – Method of eigenvalue computation. It should be one of ‘tracemin’ (TraceMIN), ‘lanczos’ (Lanczos iteration) and ‘lobpcg’ (LOBPCG). Default value: ‘tracemin’.

The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used.

<table>
<thead>
<tr>
<th>Value</th>
<th>Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘tracemin_pcg’</td>
<td>Preconditioned conjugate gradient method</td>
</tr>
<tr>
<td>‘tracemin_chol’</td>
<td>Cholesky factorization</td>
</tr>
<tr>
<td>‘tracemin_lu’</td>
<td>LU factorization</td>
</tr>
</tbody>
</table>

Returns `algebraic_connectivity` – Algebraic connectivity.

Return type `float`

Raises

- `NetworkXNotImplemented` – If G is directed.
- `NetworkXError` – If G has less than two nodes.

Notes

Edge weights are interpreted by their absolute values. For MultiGraph’s, weights of parallel edges are summed. Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the `scikit.sparse` package must be installed.

See also:
NetworkX Reference, Release 1.10

7.4.2 fiedler_vector

\textbf{fiedler_vector}(G, weight=’weight’, normalized=False, tol=1e-08, method=’tracemin’)

Return the Fiedler vector of a connected undirected graph.

The Fiedler vector of a connected undirected graph is the eigenvector corresponding to the second smallest eigenvalue of the Laplacian matrix of the graph.

\textbf{Parameters}

- \textit{G} (\textit{NetworkX graph}) – An undirected graph.
- \textit{weight} (\textit{object, optional}) – The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None.
- \textit{normalized} (\textit{bool, optional}) – Whether the normalized Laplacian matrix is used. Default value: False.
- \textit{method} (\textit{string, optional}) – Method of eigenvalue computation. It should be one of ‘tracemin’ (TraceMIN), ‘lanczos’ (Lanczos iteration) and ‘lobpcg’ (LOBPCG). Default value: ‘tracemin’.

The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used.

\begin{tabular}{|c|c|}
\hline
\textbf{Value} & \textbf{Solver} \\
\hline
‘tracemin_pcg’ & Preconditioned conjugate gradient method \\
‘tracemin_chol’ & Cholesky factorization \\
‘tracemin_lu’ & LU factorization \\
\hline
\end{tabular}

\textbf{Returns} \textbf{fiedler_vector} – Fiedler vector.

\textbf{Return type} NumPy array of floats.

\textbf{Raises}

- \textit{NetworkXNotImplemented} – If G is directed.
- \textit{NetworkXError} – If G has less than two nodes or is not connected.

\textbf{Notes}

Edge weights are interpreted by their absolute values. For MultiGraph’s, weights of parallel edges are summed. Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the \texttt{scikits.sparse} package must be installed.

\textbf{See also:}

\texttt{laplacian_matrix()}
7.4.3 spectral_ordering

spectral_ordering (G, weight='weight', normalized=False, tol=1e-08, method='tracemin')

Compute the spectral_ordering of a graph.

The spectral ordering of a graph is an ordering of its nodes where nodes in the same weakly connected components appear contiguous and ordered by their corresponding elements in the Fiedler vector of the component.

Parameters

- G (*NetworkX graph*) – A graph.
- **weight** (*object, optional*) – The data key used to determine the weight of each edge. If None, then each edge has unit weight. Default value: None.
- **normalized** (*bool, optional*) – Whether the normalized Laplacian matrix is used. Default value: False.
- **method** (*string, optional*) – Method of eigenvalue computation. It should be one of ‘tracemin’ (TraceMIN), ‘lanczos’ (Lanczos iteration) and ‘lobpcg’ (LOBPCG). Default value: ‘tracemin’.

The TraceMIN algorithm uses a linear system solver. The following values allow specifying the solver to be used.

<table>
<thead>
<tr>
<th>Value</th>
<th>Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘tracemin_pcg’</td>
<td>Preconditioned conjugate gradient method</td>
</tr>
<tr>
<td>‘tracemin_chol’</td>
<td>Cholesky factorization</td>
</tr>
<tr>
<td>‘tracemin_lu’</td>
<td>LU factorization</td>
</tr>
</tbody>
</table>

Returns spectral_ordering – Spectral ordering of nodes.

Return type NumPy array of floats.

Raises NetworkXError – If G is empty.

Notes

Edge weights are interpreted by their absolute values. For MultiGraph’s, weights of parallel edges are summed. Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the scikits.sparse package must be installed.

See also:

laplacian_matrix()

7.5 Attribute Matrices

Functions for constructing matrix-like objects from graph attributes.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>attr_matrix(G, edge_attr, node_attr, ...)</td>
<td>Returns a NumPy matrix using attributes from G.</td>
</tr>
<tr>
<td>attr_sparse_matrix(G, edge_attr, ...)</td>
<td>Returns a SciPy sparse matrix using attributes from G.</td>
</tr>
</tbody>
</table>
7.5.1 attr_matrix

attr_matrix *(G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, order=None, dtype=None)*

Returns a NumPy matrix using attributes from G.

If only G is passed in, then the adjacency matrix is constructed.

Let A be a discrete set of values for the node attribute *node_a_ttr*. Then the elements of A represent the rows and columns of the constructed matrix. Now, iterate through every edge e=(u, v) in G and consider the value of the edge attribute *edge_a_ttr*. If *ua* and *va* are the values of the node attribute *node_a_ttr* for u and v, respectively, then the value of the edge attribute is added to the matrix element at (ua, va).

Parameters

- **G** *(graph)* – The NetworkX graph used to construct the NumPy matrix.
- **edge_attr** *(str, optional)* – Each element of the matrix represents a running total of the specified edge attribute for edges whose node attributes correspond to the rows/cols of the matrix. The attribute must be present for all edges in the graph. If no attribute is specified, then we just count the number of edges whose node attributes correspond to the matrix element.
- **node_attr** *(str, optional)* – Each row and column in the matrix represents a particular value of the node attribute. The attribute must be present for all nodes in the graph. Note, the values of this attribute should be reliably hashable. So, float values are not recommended. If no attribute is specified, then the rows and columns will be the nodes of the graph.
- **normalized** *(bool, optional)* – If True, then each row is normalized by the summation of its values.
- **rc_order** *(list, optional)* – A list of the node attribute values. This list specifies the ordering of rows and columns of the array. If no ordering is provided, then the ordering will be random (and also, a return value).

Other Parameters

- **dtype** *(NumPy data-type, optional)* – A valid NumPy dtype used to initialize the array. Keep in mind certain dtypes can yield unexpected results if the array is to be normalized. The parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used.
- **order** *(‘C’, ‘F’), optional)* – Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. This parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used.

Returns

- **M** *(NumPy matrix)* – The attribute matrix.
- **ordering** *(list)* – If rc order was specified, then only the matrix is returned. However, if rc order was None, then the ordering used to construct the matrix is returned as well.

Examples

Construct an adjacency matrix:

```python
>>> G = nx.Graph()
>>> G.add_edge(0,1,thickness=1,weight=3)
>>> G.add_edge(0,2,thickness=2)
>>> G.add_edge(1,2,thickness=3)
>>> nx.attr_matrix(G, rc_order=[0,1,2])
```
Alternatively, we can obtain the matrix describing edge thickness.

```python
>>> nx.attr_matrix(G, edge_attr='thickness', rc_order=[0,1,2])
matrix([[ 0., 1., 2.],
        [ 1., 0., 3.],
        [ 2., 3., 0.]])
```

We can also color the nodes and ask for the probability distribution over all edges (u,v) describing:

\[
\Pr(v \text{ has color } Y \mid u \text{ has color } X)
\]

```python
>>> G.node[0]['color'] = 'red'
>>> G.node[1]['color'] = 'red'
>>> G.node[2]['color'] = 'blue'
>>> rc = ['red', 'blue']
>>> nx.attr_matrix(G, node_attr='color', normalized=True, rc_order=rc)
matrix([[ 0.33333333, 0.66666667],
        [ 1. , 0. ]])
```

For example, the above tells us that for all edges (u,v):

\[
\begin{align*}
\Pr(v \text{ is red } \mid u \text{ is red}) &= 1/3 \\
\Pr(v \text{ is blue } \mid u \text{ is red}) &= 2/3 \\
\Pr(v \text{ is red } \mid u \text{ is blue}) &= 1 \\
\Pr(v \text{ is blue } \mid u \text{ is blue}) &= 0
\end{align*}
\]

Finally, we can obtain the total weights listed by the node colors.

```python
>>> nx.attr_matrix(G, edge_attr='weight', node_attr='color', rc_order=rc)
matrix([[ 3., 2.],
        [ 2., 0.]])
```

Thus, the total weight over all edges (u,v) with u and v having colors:

- (red, red) is 3 # the sole contribution is from edge (0,1) (red, blue) is 2 # contributions from edges (0,2) and (1,2) (blue, red) is 2 # same as (red, blue) since graph is undirected (blue, blue) is 0 # there are no edges with blue endpoints

7.5.2 attr_sparse_matrix

attr_sparse_matrix *(G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, dtype=None)*

Returns a SciPy sparse matrix using attributes from G.

If only `G` is passed in, then the adjacency matrix is constructed.

Let A be a discrete set of values for the node attribute `node_attr`. Then the elements of A represent the rows and columns of the constructed matrix. Now, iterate through every edge `e=(u,v)` in `G` and consider the value of the edge attribute `edge_attr`. If `ua` and `va` are the values of the node attribute `node_attr` for `u` and `v`, respectively, then the value of the edge attribute is added to the matrix element at `(ua, va)`.

Parameters

- `G (graph)` – The NetworkX graph used to construct the NumPy matrix.
- `edge_attr` *(str, optional)* – Each element of the matrix represents a running total of the specified edge attribute for edges whose node attributes correspond to the rows/cols of the matrix. The attribute must be present for all edges in the graph. If no attribute is specified,
then we just count the number of edges whose node attributes correspond to the matrix element.

- **node_attr** *(str, optional)* – Each row and column in the matrix represents a particular value of the node attribute. The attribute must be present for all nodes in the graph. Note, the values of this attribute should be reliably hashable. So, float values are not recommended. If no attribute is specified, then the rows and columns will be the nodes of the graph.

- **normalized** *(bool, optional)* – If True, then each row is normalized by the summation of its values.

- **rc_order** *(list, optional)* – A list of the node attribute values. This list specifies the ordering of rows and columns of the array. If no ordering is provided, then the ordering will be random (and also, a return value).

Other Parameters

- **dtype** *(NumPy data-type, optional)* – A valid NumPy dtype used to initialize the array. Keep in mind certain dtypes can yield unexpected results if the array is to be normalized. The parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used.

Returns

- **M** *(SciPy sparse matrix)* – The attribute matrix.

- **ordering** *(list)* – If rc_order was specified, then only the matrix is returned. However, if rc_order was None, then the ordering used to construct the matrix is returned as well.

Examples

Construct an adjacency matrix:

```python
g = nx.Graph()
g.add_edge(0,1,thickness=1,weight=3)
g.add_edge(0,2,thickness=2)
g.add_edge(1,2,thickness=3)
M = nx.attr_sparse_matrix(G, rc_order=[0,1,2])
M.todense()
```

Alternatively, we can obtain the matrix describing edge thickness.

```python
M = nx.attr_sparse_matrix(G, edge_attr='thickness', rc_order=[0,1,2])
M.todense()
```

We can also color the nodes and ask for the probability distribution over all edges (u,v) describing:

\[Pr(v \text{ has color } Y \mid u \text{ has color } X) \]

```python
G.node[0]['color'] = 'red'
G.node[1]['color'] = 'red'
G.node[2]['color'] = 'blue'
rc = ['red', 'blue']
M = nx.attr_sparse_matrix(G, node_attr='color', normalized=True, rc_order=rc)
M.todense()
```
For example, the above tells us that for all edges (u,v):
\[
\Pr(v \text{ is red} \mid u \text{ is red}) = \frac{1}{3} \Pr(v \text{ is blue} \mid u \text{ is red}) = \frac{2}{3}
\]
\[
\Pr(v \text{ is red} \mid u \text{ is blue}) = 1 \Pr(v \text{ is blue} \mid u \text{ is blue}) = 0
\]
Finally, we can obtain the total weights listed by the node colors.

```python
>>> M = nx.attr_sparse_matrix(G, edge_attr='weight', node_attr='color', rc_order=rc)
>>> M.todense()
matrix([[ 3.,  2.],
         [ 2.,  0.]])
```

Thus, the total weight over all edges (u,v) with u and v having colors:

- (red, red) is 3 # the sole contribution is from edge (0,1)
- (red, blue) is 2 # contributions from edges (0,2) and (1,2)
- (blue, red) is 2 # same as (red, blue) since graph is undirected
- (blue, blue) is 0 # there are no edges with blue endpoints
CONVERTING TO AND FROM OTHER DATA FORMATS

8.1 To NetworkX Graph

Functions to convert NetworkX graphs to and from other formats.

The preferred way of converting data to a NetworkX graph is through the graph constructor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically.

Examples

Create a graph with a single edge from a dictionary of dictionaries

```python
>>> d={0: {1: 1}}  # dict-of-dicts single edge (0,1)
>>> G=nx.Graph(d)
```

See also:

nx_pygraphviz, nx_pydot

```python
to_networkx_graph(data[, create_using, ...])  Make a NetworkX graph from a known data structure.
```

8.1.1 to_networkx_graph

[to_networkx_graph](data[, create_using, ...]) Make a NetworkX graph from a known data structure.

The preferred way to call this is automatically from the class constructor

```python
>>> d={0: {1: {'weight':1}}}  # dict-of-dicts single edge (0,1)
>>> G=nx.Graph(d)
```

instead of the equivalent

```python
>>> G=nx.from_dict_of_dicts(d)
```

Parameters

- **data** *(a object to be converted)* – Current known types are: any NetworkX graph dict-of-dicts dist-of-lists list of edges numpy matrix numpy ndarray scipy sparse matrix pygraphviz agraph

- **create_using** *(NetworkX graph)* – Use specified graph for result. Otherwise a new graph is created.
• **multigraph_input** *(bool (default False))* – If True and data is a dict_of_dicts, try to create a multigraph assuming dict_of_dict_of_lists. If data and create_using are both multigraphs then create a multigraph from a multigraph.

8.2 Dictionaries

to_dict_of_dicts

to_dict_of_dicts(G[, nodelist, edge_data])
Return adjacency representation of graph as a dictionary of dictionaries.

Parameters

- **G** *(graph)* – A NetworkX graph
- **nodelist** *(list)* – Use only nodes specified in nodelist
- **edge_data** *(list, optional)* – If provided, the value of the dictionary will be set to edge_data for all edges. This is useful to make an adjacency matrix type representation with 1 as the edge data. If edgedata is None, the edgedata in G is used to fill the values. If G is a multigraph, the edgedata is a dict for each pair (u,v).

from_dict_of_dicts

from_dict_of_dicts(d[, create_using, ...])
Return a graph from a dictionary of dictionaries.

Parameters

- **d** *(dictionary of dictionaries)* – A dictionary of dictionaries adjacency representation.
- **create_using** *(NetworkX graph)* – Use specified graph for result. Otherwise a new graph is created.
- **multigraph_input** *(bool (default False))* – When True, the values of the inner dict are assumed to be containers of edge data for multiple edges. Otherwise this routine assumes the edge data are singletons.

Examples

```python
>>> dod= {0: {1:{'weight':1}}}} # single edge (0,1)
>>> G=nx.from_dict_of_dicts(dod)
```

or >>> G=nx.Graph(dod) # use Graph constructor

8.3 Lists

426 Chapter 8. Converting to and from other data formats
to_dict_of_lists(G[, nodelist]) Return adjacency representation of graph as a dictionary of lists.

from_dict_of_lists(d[, create_using]) Return a graph from a dictionary of lists.

to_edgelist(G[, nodelist]) Return a list of edges in the graph.

from_edgelist(edgelist[, create_using]) Return a graph from a list of edges.

8.3.1 to_dict_of_lists

to_dict_of_lists(G, nodelist=None)
Return adjacency representation of graph as a dictionary of lists.

Parameters

- G (graph) – A NetworkX graph
- nodelist (list) – Use only nodes specified in nodelist

Notes

Completely ignores edge data for MultiGraph and MultiDiGraph.

8.3.2 from_dict_of_lists

from_dict_of_lists(d, create_using=None)
Return a graph from a dictionary of lists.

Parameters

- d (dictionary of lists) – A dictionary of lists adjacency representation.
- create_using (NetworkX graph) – Use specified graph for result. Otherwise a new graph is created.

Examples

```python
>>> dol= {0:[1]} # single edge (0,1)
>>> G=nx.from_dict_of_lists(dol)
```

or >>> G=nx.Graph(dol) # use Graph constructor

8.3.3 to_edgelist

to_edgelist(G, nodelist=None)
Return a list of edges in the graph.

Parameters

- G (graph) – A NetworkX graph
- nodelist (list) – Use only nodes specified in nodelist
8.3.4 from_edgelist

from_edgelist (edgelist, create_using=None)

Return a graph from a list of edges.

Parameters

• edgelist (list or iterator) – Edge tuples

• create_using (NetworkX graph) – Use specified graph for result. Otherwise a new graph is created.

Examples

```python
>>> edgelist = [(0,1)] # single edge (0,1)
>>> G = nx.from_edgelist(edgelist)
```

or >>> G = nx.Graph(edgelist) # use Graph constructor

8.4 Numpy

Functions to convert NetworkX graphs to and from numpy/scipy matrices.

The preferred way of converting data to a NetworkX graph is through the graph constructor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically.

Examples

Create a 10 node random graph from a numpy matrix

```python
>>> import numpy

>>> a = numpy.reshape(numpy.random.random_integers(0,1,size=100),(10,10))

>>> D = nx.DiGraph(a)
```
or equivalently

```python
>>> D = nx.to_networkx_graph(a,create_using=nx.DiGraph())
```

See also:

nx_pygraphviz, nx_pydot

to_numpy_matrix(G[, nodelist, dtype, order, ...]) Return the graph adjacency matrix as a NumPy matrix.

to_numpy_recarray(G[, nodelist, dtype, order]) Return the graph adjacency matrix as a NumPy recarray.

from_numpy_matrix(A[, parallel_edges, ...]) Return a graph from numpy matrix.

8.4.1 to_numpy_matrix

to_numpy_matrix (G, nodelist=None, dtype=None, order=None, multigraph_weight=<built-in function sum>, weight='weight', nonedge=0.0)

Return the graph adjacency matrix as a NumPy matrix.

Parameters
• **G (graph)** – The NetworkX graph used to construct the NumPy matrix.

• **nodelist (list, optional)** – The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().

• **dtype (NumPy data type, optional)** – A valid single NumPy data type used to initialize the array. This must be a simple type such as int or numpy.float64 and not a compound data type (see to_numpy_recarray) If None, then the NumPy default is used.

• **order ('C', 'F', optional)** – Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. If None, then the NumPy default is used.

• **multigraph_weight (sum, min, max), optional)** – An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges.

• **weight (string or None optional (default = 'weight'))** – The edge attribute that holds the numerical value used for the edge weight. If an edge does not have that attribute, then the value 1 is used instead.

• **nonedge (float (default = 0.0))** – The matrix values corresponding to nonedges are typically set to zero. However, this could be undesirable if there are matrix values corresponding to actual edges that also have the value zero. If so, one might prefer nonedges to have some other value, such as nan.

Returns M – Graph adjacency matrix

Return type NumPy matrix

See also:

to_numpy_recarray(), from_numpy_matrix()

Notes

The matrix entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined by the multigraph_weight parameter. The default is to sum the weight attributes for each of the parallel edges.

When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist.

The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Numpy matrix can be modified as follows:

```python
>>> import numpy as np
>>> G = nx.Graph(([1, 1]))
>>> A = nx.to_numpy_matrix(G)
>>> A
matrix([[1.0]])
>>> A.A[np.diag_indices_from(A)] *= 2
>>> A
matrix([[2.0]])
```
Examples

```python
>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> nx.to_numpy_matrix(G, nodelist=[0,1,2])
numpy.array([[ 0., 2., 0.],
             [ 1., 0., 0.],
             [ 0., 0., 4.]], dtype=float)
```

8.4.2 to_numpy_recarray

to_numpy_recarray(G, nodelist=None, dtype=[('weight', float), ('cost', int)], order=None)

Return the graph adjacency matrix as a NumPy recarray.

Parameters

- **G** (graph) – The NetworkX graph used to construct the NumPy matrix.
- **nodelist** (list, optional) – The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
- **dtype** (NumPy data-type, optional) – A valid NumPy named dtype used to initialize the NumPy recarray. The data type names are assumed to be keys in the graph edge attribute dictionary.
- **order** (‘C’, ‘F’, optional) – Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. If None, then the NumPy default is used.

Returns **M** – The graph with specified edge data as a Numpy recarray.

Return type NumPy recarray

Notes

When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist.

Examples

```python
>>> G = nx.Graph()
>>> G.add_edge(1,2,weight=7.0,cost=5)
>>> A=nx.to_numpy_recarray(G,dtype=[('weight',float),('cost',int)])
>>> print(A.weight)
[[ 0.  7.]
 [ 7.  0.]]
>>> print(A.cost)
[[ 0  5]
 [ 5  0]]
```
8.4.3 from_numpy_matrix

from_numpy_matrix(A, parallel_edges=False, create_using=None)

Return a graph from numpy matrix.

The numpy matrix is interpreted as an adjacency matrix for the graph.

Parameters

- **A** (numpy matrix) – An adjacency matrix representation of a graph
- **parallel_edges** (Boolean) – If this is True, create_using is a multigraph, and A is an integer matrix, then entry \((i, j)\) in the matrix is interpreted as the number of parallel edges joining vertices \(i\) and \(j\) in the graph. If it is False, then the entries in the adjacency matrix are interpreted as the weight of a single edge joining the vertices.
- **create_using** (NetworkX graph) – Use specified graph for result. The default is Graph()

Notes

If create_using is an instance of networkx.MultiGraph or networkx.MultiDiGraph, parallel_edges is True, and the entries of A are of type int, then this function returns a multigraph (of the same type as create_using) with parallel edges.

If create_using is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix \(A\) will be added to the graph.

If the numpy matrix has a single data type for each matrix entry it will be converted to an appropriate Python data type.

If the numpy matrix has a user-specified compound data type the names of the data fields will be used as attribute keys in the resulting NetworkX graph.

See also:

to_numpy_matrix(), to_numpy_recarray()

Examples

Simple integer weights on edges:

```python
>>> import numpy
>>> A=numpy.matrix([[1, 1], [2, 1]])
>>> G=nx.from_numpy_matrix(A)
```

If create_using is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted edges joining the vertices (without creating parallel edges):

```python
>>> import numpy
>>> A = numpy.matrix([[1, 1], [1, 2]])
>>> G = nx.from_numpy_matrix(A, create_using = nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 2}}
```

If create_using is a multigraph and the matrix has only integer entries but parallel_edges is True, then the entries will be interpreted as the number of parallel edges joining those two vertices:
```python
>>> import numpy
>>> A = numpy.matrix([[1, 1], [1, 2]])
>>> temp = nx.MultiGraph()
>>> G = nx.from_numpy_matrix(A, parallel_edges = True, create_using = temp)
>>> G[1][1]
{0: {'weight': 1}, 1: {'weight': 1}}
```

User defined compound data type on edges:

```python
>>> import numpy
>>> dt = [('weight', float), ('cost', int)]
>>> A = numpy.matrix([[1.0, 2]], dtype = dt)
>>> G = nx.from_numpy_matrix(A)
>>> G.edges()
[(0, 0)]
>>> G[0][0]['cost']
2
>>> G[0][0]['weight']
1.0
```

8.5 Scipy

to_scipy_sparse_matrix *(G[, nodelist, dtype, ...])*
Return the graph adjacency matrix as a SciPy sparse matrix.

from_scipy_sparse_matrix *(A[, ...])*
Creates a new graph from an adjacency matrix given as a SciPy sparse matrix.

8.5.1 to_scipy_sparse_matrix

to_scipy_sparse_matrix *(G, nodelist=None, dtype=None, weight='weight', format='csr')*
Return the graph adjacency matrix as a SciPy sparse matrix.

Parameters

- **G (graph)** – The NetworkX graph used to construct the NumPy matrix.
- **nodelist (list, optional)** – The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
- **dtype (NumPy data-type, optional)** – A valid NumPy dtype used to initialize the array. If None, then the NumPy default is used.
- **weight (string or None optional (default='weight'))** – The edge attribute that holds the numerical value used for the edge weight. If None then all edge weights are 1.
- **format (str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'})** – The type of the matrix to be returned (default ‘csr’). For some algorithms different implementations of sparse matrices can perform better. See \(^1\) for details.

Returns
M – Graph adjacency matrix.

Return type
SciPy sparse matrix

Notes

The matrix entries are populated using the edge attribute held in parameter weight. When an edge does not have that attribute, the value of the entry is 1.

For multiple edges the matrix values are the sums of the edge weights.

When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist.

Uses coo_matrix format. To convert to other formats specify the format= keyword.

The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Scipy sparse matrix can be modified as follows:

```python
>>> import scipy as sp
>>> G = nx.Graph([(1,1)])
>>> A = nx.to_scipy_sparse_matrix(G)
>>> print(A.todense())
[[1]]
>>> A.setdiag(A.diagonal()*2)
>>> print(A.todense())
[[2]]
```

Examples

```python
>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> S = nx.to_scipy_sparse_matrix(G, nodelist=[0,1,2])
>>> print(S.todense())
[[0 2 0]
 [1 0 0]
 [0 0 4]]
```

References

8.5.2 from_scipy_sparse_matrix

from_scipy_sparse_matrix(A, parallel_edges=False, create_using=None, edge_attribute='weight')

Creates a new graph from an adjacency matrix given as a SciPy sparse matrix.

Parameters

- A (scipy sparse matrix) – An adjacency matrix representation of a graph
- parallel_edges (Boolean) – If this is True, create_using is a multigraph, and A is an integer matrix, then entry (i, j) in the matrix is interpreted as the number of parallel edges joining vertices i and j in the graph. If it is False, then the entries in the adjacency matrix are interpreted as the weight of a single edge joining the vertices.
- create_using (NetworkX graph) – Use specified graph for result. The default is Graph()
NetworkX Reference, Release 1.10

- **edge_attribute** *(string)* – Name of edge attribute to store matrix numeric value. The data will have the same type as the matrix entry (int, float, (real, imag)).

Notes

If `create_using` is an instance of `networkx.MultiGraph` or `networkx.MultiDiGraph`, `parallel_edges` is True, and the entries of A are of type int, then this function returns a multigraph (of the same type as `create_using`) with parallel edges. In this case, `edge_attribute` will be ignored.

If `create_using` is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix A will be added to the graph.

Examples

```python
>>> import scipy.sparse
>>> A = scipy.sparse.eye(2,2,1)
>>> G = nx.from_scipy_sparse_matrix(A)
```

If `create_using` is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted edges joining the vertices (without creating parallel edges):

```python
>>> import scipy
>>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]])
>>> G = nx.from_scipy_sparse_matrix(A, create_using=nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 2}}
```

If `create_using` is a multigraph and the matrix has only integer entries but `parallel_edges` is True, then the entries will be interpreted as the number of parallel edges joining those two vertices:

```python
>>> import scipy
>>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]])
>>> G = nx.from_scipy_sparse_matrix(A, parallel_edges=True,
... create_using=nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 1}, 1: {'weight': 1}}
```

8.6 Pandas

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>to_pandas_dataframe(G[, nodelist,...])</code></td>
<td>Return the graph adjacency matrix as a Pandas DataFrame.</td>
</tr>
<tr>
<td><code>from_pandas_dataframe(df, source, target[,...])</code></td>
<td>Return a graph from Pandas DataFrame.</td>
</tr>
</tbody>
</table>

8.6.1 to_pandas_dataframe

`to_pandas_dataframe(G, nodelist=None, multigraph_weight=<built-in function sum>, weight='weight', nonedge=0.0)`

Return the graph adjacency matrix as a Pandas DataFrame.

Parameters

- **G** *(graph)* – The NetworkX graph used to construct the Pandas DataFrame.
• **nodelist** *(list, optional)* – The rows and columns are ordered according to the nodes in *nodelist*. If *nodelist* is None, then the ordering is produced by *G.nodes()*.

• **multigraph_weight** *(sum, min, max, optional)* – An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges.

• **weight** *(string or None, optional)* – The edge attribute that holds the numerical value used for the edge weight. If an edge does not have that attribute, then the value 1 is used instead.

• **nonedge** *(float, optional)* – The matrix values corresponding to nonedges are typically set to zero. However, this could be undesirable if there are matrix values corresponding to actual edges that also have the value zero. If so, one might prefer nonedges to have some other value, such as nan.

Returns

- df – Graph adjacency matrix

Return type

Pandas DataFrame

Notes

The DataFrame entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined by the ‘multigraph_weight’ parameter. The default is to sum the weight attributes for each of the parallel edges.

When *nodelist* does not contain every node in *G*, the matrix is built from the subgraph of *G* that is induced by the nodes in *nodelist*.

The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Pandas DataFrame can be modified as follows:

```python
>>> import pandas as pd
>>> import numpy as np
>>> G = nx.Graph([(1,1)])
>>> df = nx.to_pandas_dataframe(G)
>>> df
  1 1
1 1 1
>>> df.values[np.diag_indices_from(df)] *= 2
>>> df
  1
1 2
```

Examples

```python
>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> nx.to_pandas_dataframe(G, nodelist=[0,1,2])
```

```
0 1 2
0 0 2
1 1 0
2 0 4
```
8.6.2 from_pandas_dataframe

from_pandas_dataframe (df, source, target, edge_attr=None, create_using=None)

Return a graph from Pandas DataFrame.

The Pandas DataFrame should contain at least two columns of node names and zero or more columns of node attributes. Each row will be processed as one edge instance.

Note: This function iterates over DataFrame.values, which is not guaranteed to retain the data type across columns in the row. This is only a problem if your row is entirely numeric and a mix of ints and floats. In that case, all values will be returned as floats. See the DataFrame.iterrows documentation for an example.

Parameters

- df (Pandas DataFrame) – An edge list representation of a graph
- source (str or int) – A valid column name (string or integer) for the source nodes (for the directed case).
- target (str or int) – A valid column name (string or integer) for the target nodes (for the directed case).
- edge_attr (str or int, iterable, True) – A valid column name (str or integer) or list of column names that will be used to retrieve items from the row and add them to the graph as edge attributes. If True, all of the remaining columns will be added.
- create_using (NetworkX graph) – Use specified graph for result. The default is Graph()

See also:

to_pandas_dataframe()

Examples

Simple integer weights on edges:

```python
>>> import pandas as pd
>>> import numpy as np
>>> r = np.random.RandomState(seed=5)
>>> ints = r.random_integers(1, 10, size=(3,2))
>>> a = ['A', 'B', 'C']
>>> b = ['D', 'A', 'E']
>>> df = pd.DataFrame(ints, columns=['weight', 'cost'])
>>> df[0] = a
>>> df['b'] = b
>>> df
   weight  cost  0  b
0      4     7  A  D
1      7     1  B  A
2     10     9  C  E
>>> G=nx.from_pandas_dataframe(df, 0, 'b', ['weight', 'cost'])
>>> G['E']['C']['weight']
10
>>> G['E']['C']['cost']
9
```
CHAPTER
NINE

READING AND WRITING GRAPHS

9.1 Adjacency List

9.1.1 Adjacency List

Read and write NetworkX graphs as adjacency lists.

Adjacency list format is useful for graphs without data associated with nodes or edges and for nodes that can be meaningfully represented as strings.

Format

The adjacency list format consists of lines with node labels. The first label in a line is the source node. Further labels in the line are considered target nodes and are added to the graph along with an edge between the source node and target node.

The graph with edges a-b, a-c, d-e can be represented as the following adjacency list (anything following the # in a line is a comment):

a b c # source target target
d e

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>read_adjlist(path[, comments, delimiter, ...])</td>
<td>Read graph in adjacency list format from path.</td>
</tr>
<tr>
<td>write_adjlist((G, path[, comments, ...])</td>
<td>Write graph G in single-line adjacency-list format to path.</td>
</tr>
<tr>
<td>parse_adjlist(lines[, comments, delimiter, ...])</td>
<td>Parse lines of a graph adjacency list representation.</td>
</tr>
<tr>
<td>generate_adjlist(G[, delimiter])</td>
<td>Generate a single line of the graph G in adjacency list format.</td>
</tr>
</tbody>
</table>

9.1.2 read_adjlist

read_adjlist (path, comments='#', delimiter=None, create_using=None, nodetype=None, encoding='utf-8')

Read graph in adjacency list format from path.

Parameters

- **path** (string or file) – Filename or file handle to read. Filenames ending in .gz or .bz2 will be uncompressed.
- **create_using** (NetworkX graph container) – Use given NetworkX graph for holding nodes or edges.
- **nodetype** (Python type, optional) – Convert nodes to this type.
• **comments** *(string, optional)* – Marker for comment lines

• **delimiter** *(string, optional)* – Separator for node labels. The default is whitespace.

• **create_using** – Use given NetworkX graph for holding nodes or edges.

Returns
G – The graph corresponding to the lines in adjacency list format.

Return type
NetworkX graph

Examples

```python
>>> G=nx.path_graph(4)
>>> nx.write_adjlist(G, "test.adjlist")
>>> G=nx.read_adjlist("test.adjlist")
```

The path can be a filehandle or a string with the name of the file. If a filehandle is provided, it has to be opened in ‘rb’ mode.

```python
>>> fh=open("test.adjlist", 'rb')
>>> G=nx.read_adjlist(fh)
```

Filenames ending in .gz or .bz2 will be compressed.

```python
>>> nx.write_adjlist(G,"test.adjlist.gz")
>>> G=nx.read_adjlist("test.adjlist.gz")
```

The optional nodetype is a function to convert node strings to nodetype.

For example

```python
>>> G=nx.read_adjlist("test.adjlist", nodetype=int)
```

will attempt to convert all nodes to integer type.

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.)

The optional create_using parameter is a NetworkX graph container. The default is Graph(), an undirected graph. To read the data as a directed graph use

```python
>>> G=nx.read_adjlist("test.adjlist", create_using=nx.DiGraph())
```

Notes

This format does not store graph or node data.

See also:

write_adjlist()

9.1.3 write_adjlist

write_adjlist *(G, path, comments='#', delimiter=' ', encoding='utf-8')*
Write graph G in single-line adjacency-list format to path.

Parameters

• **G** *(NetworkX graph)* –
• **path** *(string or file)* – Filename or file handle for data output. Filenames ending in .gz or .bz2 will be compressed.

• **comments** *(string, optional)* – Marker for comment lines

• **delimiter** *(string, optional)* – Separator for node labels

• **encoding** *(string, optional)* – Text encoding.

Examples

```python
>>> G = nx.path_graph(4)
>>> nx.write_adjlist(G, "test.adjlist")

The path can be a filehandle or a string with the name of the file. If a filehandle is provided, it has to be opened in ‘wb’ mode.

```python
>>> fh = open("test.adjlist", 'wb')
>>> nx.write_adjlist(G, fh)
```

### Notes

This format does not store graph, node, or edge data.

See also:

`read_adjlist()`, `generate_adjlist()`

### 9.1.4 parse_adjlist

**parse_adjlist** *(lines, comments=’#’, delimiter=None, create_using=None, nodetype=None)*

Parse lines of a graph adjacency list representation.

**Parameters**

- **lines** *(list or iterator of strings)* – Input data in adjlist format

- **create_using** *(NetworkX graph container)* – Use given NetworkX graph for holding nodes or edges.

- **nodetype** *(Python type, optional)* – Convert nodes to this type.

- **comments** *(string, optional)* – Marker for comment lines

- **delimiter** *(string, optional)* – Separator for node labels. The default is whitespace.

**Returns**

- **G** – The graph corresponding to the lines in adjacency list format.

**Return type** NetworkX graph

### Examples
```python
>>> lines = ['1 2 5',
... '2 3 4',
... '3 5',
... '4',
... '5']
>>> G = nx.parse_adjlist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4, 5]
>>> G.edges()
[(1, 2), (1, 5), (2, 3), (2, 4), (3, 5)]
```

See also:

`read_adjlist()`

### 9.1.5 generate_adjlist

**generate_adjlist**(G, delimiter=' ')

Generate a single line of the graph G in adjacency list format.

**Parameters**

- G ([NetworkX](https://networkx.github.io) graph)
- delimiter (string, optional) – Separator for node labels

**Returns** lines – Lines of data in adjlist format.

**Return type** string

**Examples**

```python
>>> G = nx.lollipop_graph(4, 3)
>>> for line in nx.generate_adjlist(G):
... print(line)
0 1 2 3
1 2 3
2 3
3 4
4 5
5 6
6
```

See also:

`write_adjlist()`, `read_adjlist()`

### 9.2 Multiline Adjacency List

#### 9.2.1 Multi-line Adjacency List

Read and write NetworkX graphs as multi-line adjacency lists.

The multi-line adjacency list format is useful for graphs with nodes that can be meaningfully represented as strings. With this format simple edge data can be stored but node or graph data is not.
Format

The first label in a line is the source node label followed by the node degree d. The next d lines are target node labels and optional edge data. That pattern repeats for all nodes in the graph.

The graph with edges a-b, a-c, d-e can be represented as the following adjacency list (anything following the # in a line is a comment):

```
example.multiline-adjlist
a 2
 b
 c
d 1
 e
generate_multiline_adjlist(G[, delimiter]) Generate a single line of the graph G in multiline adjacency list format.
```

9.2.2 read_multiline_adjlist

read_multiline_adjlist (path[, comments, ...])   Read graph in multi-line adjacency list format from path.
write_multiline_adjlist(G, path[, ...])   Write the graph G in multiline adjacency list format to path
parse_multiline_adjlist(lines[, comments, ...])   Parse lines of a multiline adjacency list representation of a graph.

def read_multiline_adjlist(path[, comments, ...])
    Read graph in multi-line adjacency list format from path.

    Parameters

    - **path** (string or file) – Filename or file handle to read. Filenames ending in .gz or .bz2 will be uncompressed.
    - **create_using** (NetworkX graph container) – Use given NetworkX graph for holding nodes or edges.
    - **nodetype** (Python type, optional) – Convert nodes to this type.
    - **edgetype** (Python type, optional) – Convert edge data to this type.
    - **comments** (string, optional) – Marker for comment lines
    - **delimiter** (string, optional) – Separator for node labels. The default is whitespace.

    Returns

    **G**

    Return type    NetworkX graph

    Examples

    >>> G=nx.path_graph(4)
    >>> nx.write_multiline_adjlist(G,"test.adjlist")
    >>> G=nx.read_multiline_adjlist("test.adjlist")

    The path can be a file or a string with the name of the file. If a file is provided, it has to be opened in 'rb' mode.

    >>> fh=open("test.adjlist", 'rb')
    >>> G=nx.read_multiline_adjlist(fh)
Filenames ending in .gz or .bz2 will be compressed.

```python
>>> nx.write_multiline_adjlist(G, "test.adjlist.gz")
```

```python
>>> G=nx.read_multiline_adjlist("test.adjlist.gz")
```

The optional nodetype is a function to convert node strings to nodetype. For example

```python
>>> G=nx.read_multiline_adjlist("test.adjlist", nodetype=int)
```

will attempt to convert all nodes to integer type.

The optional edgetype is a function to convert edge data strings to edgetype.

```python
>>> G=nx.read_multiline_adjlist("test.adjlist")
```

The optional create_using parameter is a NetworkX graph container. The default is Graph(), an undirected graph. To read the data as a directed graph use

```python
>>> G=nx.read_multiline_adjlist("test.adjlist", create_using=nx.DiGraph())
```

Notes

This format does not store graph, node, or edge data.

See also:

write_multiline_adjlist()

9.2.3 write_multiline_adjlist

write_multiline_adjlist (G, path, delimiter=' ', comments='#', encoding='utf-8')

Write the graph G in multiline adjacency list format to path

Parameters

- G (NetworkX graph) –
- comments (string, optional) – Marker for comment lines
- delimiter (string, optional) – Separator for node labels
- encoding (string, optional) – Text encoding.

Examples

```python
>>> G=nx.path_graph(4)
>>> nx.write_multiline_adjlist(G, "test.adjlist")
```

The path can be a file handle or a string with the name of the file. If a file handle is provided, it has to be opened in 'wb' mode.

```python
>>> fh=open("test.adjlist", 'wb')
>>> G=nx.read_multiline_adjlist(fh)
```

Filenames ending in .gz or .bz2 will be compressed.
>>> nx.write_multiline_adjlist(G,"test.adjlist.gz")

See also:

read_multiline_adjlist()

9.2.4 parse_multiline_adjlist

parse_multiline_adjlist(lines, comments='#', create_using=None, node_type=None, edgetype=None)

Parse lines of a multiline adjacency list representation of a graph.

Parameters

• lines (list or iterator of strings) – Input data in multiline adjlist format
• create_using (NetworkX graph container) – Use given NetworkX graph for holding nodes or edges.
• nodetype (Python type, optional) – Convert nodes to this type.
• comments (string, optional) – Marker for comment lines
• delimiter (string, optional) – Separator for node labels. The default is whitespace.
• create_using – Use given NetworkX graph for holding nodes or edges.

Returns G – The graph corresponding to the lines in multiline adjacency list format.

Return type NetworkX graph

Examples

>>> lines = ['1 2',
...          '2 {'weight':3, 'name': 'Frodo'}",
...          '3 {}",
...          '2 1",
...          '5 {'weight':6, 'name': 'Saruman'}]

>>> G = nx.parse_multiline_adjlist(iter(lines), nodetype = int)

>>> G.nodes()
[1, 2, 3, 5]

9.2.5 generate_multiline_adjlist

generate_multiline_adjlist(G, delimiter=' ')

Generate a single line of the graph G in multiline adjacency list format.

Parameters

• G (NetworkX graph) –
• delimiter (string, optional) – Separator for node labels

Returns lines – Lines of data in multiline adjlist format.

Return type string
Examples

```python
>>> G = nx.lollipop_graph(4, 3)
>>> for line in nx.generate_multiline_adjlist(G):
... print(line)
0 3
1 {}
2 {}
3 {}
1 2
2 {}
3 {}
2 1
3 {}
3 1
4 {}
4 1
4 1
5 {}
5 1
6 {}
6 0
```

See also:

`write_multiline_adjlist()`, `read_multiline_adjlist()`

### 9.3 Edge List

#### 9.3.1 Edge Lists

Read and write NetworkX graphs as edge lists.

The multi-line adjacency list format is useful for graphs with nodes that can be meaningfully represented as strings. With the edgelist format simple edge data can be stored but node or graph data is not. There is no way of representing isolated nodes unless the node has a self-loop edge.

**Format**

You can read or write three formats of edge lists with these functions.

- **Node pairs with no data:**

  1 2

- **Python dictionary as data:**

  1 2 {'weight':7, 'color':'green'}

- **Arbitrary data:**

  1 2 7 green

- **`read_edgelist(path[, comments, delimiter, ...])`**
  Read a graph from a list of edges.

- **`write_edgelist(G, path[, comments, ...])`**
  Write graph as a list of edges.
Table 9.3 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>read_weighted_edgelist</td>
<td>Read a graph as list of edges with numeric weights.</td>
</tr>
<tr>
<td>write_weighted_edgelist</td>
<td>Write graph G as a list of edges with numeric weights.</td>
</tr>
<tr>
<td>generate_edgelist</td>
<td>Generate a single line of the graph G in edge list format.</td>
</tr>
<tr>
<td>parse_edgelist</td>
<td>Parse lines of an edge list representation of a graph.</td>
</tr>
</tbody>
</table>

9.3.2 read_edgelist

**read_edgelist** *(path, comments='#', delimiter=None, create_using=None, nodetype=None, data=True, edgetype=None, encoding='utf-8')*

Read a graph from a list of edges.

**Parameters**

- **path** *(file or string)* – File or filename to read. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed.
- **comments** *(string, optional)* – The character used to indicate the start of a comment.
- **delimiter** *(string, optional)* – The string used to separate values. The default is whitespace.
- **create_using** *(Graph container, optional)* – Use specified container to build graph. The default is networkx.Graph, an undirected graph.
- **nodetype** *(int, float, str, Python type, optional)* – Convert node data from strings to specified type
- **data** *(bool or list of (label,type) tuples)* – Tuples specifying dictionary key names and types for edge data
- **edgetype** *(int, float, str, Python type, optional OBSOLETE)* – Convert edge data from strings to specified type and use as 'weight'
- **encoding** *(string, optional)* – Specify which encoding to use when reading file.

**Returns** G – A networkx Graph or other type specified with create_using

**Return type** graph

**Examples**

```python
>>> nx.write_edgelist(nx.path_graph(4), "test.edgelist")
>>> G=nx.read_edgelist("test.edgelist")
```

```python
>>> fh=open("test.edgelist", 'rb')
>>> G=nx.read_edgelist(fh)
>>> fh.close()
```

```python
>>> G=nx.read_edgelist("test.edgelist", nodetype=int)
>>> G=nx.read_edgelist("test.edgelist",create_using=nx.DiGraph())
```

**Edgelist with data in a list:**

```python
>>> textline = '1 2 3'
>>> fh = open('test.edgelist', 'w')
>>> d = fh.write(textline)
>>> fh.close()
>>> G = nx.read_edgelist('test.edgelist', nodetype=int, data=(("weight",float),))
```
>>> G.nodes()
[1, 2]
>>> G.edges(data = True)
[(1, 2, {'weight': 3.0})]

See parse_edgelist() for more examples of formatting.

See also:
parse_edgelist()

Notes

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.)

9.3.3 write_edgelist

write_edgelist (G, path, comments='#', delimiter=' ', data=True, encoding='utf-8')

Write graph as a list of edges.

Parameters

- G (graph) – A NetworkX graph
- path (file or string) – File or filename to write. If a file is provided, it must be opened in 'wb' mode. Filenames ending in .gz or .bz2 will be compressed.
- comments (string, optional) – The character used to indicate the start of a comment
- delimiter (string, optional) – The string used to separate values. The default is whitespace.
- data (bool or list, optional) – If False write no edge data. If True write a string representation of the edge data dictionary. If a list (or other iterable) is provided, write the keys specified in the list.
- encoding (string, optional) – Specify which encoding to use when writing file.

Examples

```python
>>> G=nx.path_graph(4)
>>> nx.write_edgelist(G, "test.edgelist")
>>> G=nx.path_graph(4)
>>> fh=open("test.edgelist","wb")
>>> nx.write_edgelist(G, fh)
>>> nx.write_edgelist(G, "test.edgelist.gz")
>>> nx.write_edgelist(G, "test.edgelist.gz", data=False)
```

```python
>>> G=nx.Graph()
>>> G.add_edge(1,2,weight=7,color='red')
>>> nx.write_edgelist(G,'test.edgelist',data=False)
>>> nx.write_edgelist(G,'test.edgelist',data=['color'])
>>> nx.write_edgelist(G,'test.edgelist',data=['color','weight'])
```

See also:
write_edgelist(), write_weighted_edgelist()
9.3.4 read_weighted_edgelist

read_weighted_edgelist(path, comments='#', delimiter=None, create_using=None, nodetype=None, encoding='utf-8')

Read a graph as list of edges with numeric weights.

Parameters

- **path** *(file or string)* – File or filename to read. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed.
- **comments** *(string, optional)* – The character used to indicate the start of a comment.
- **delimiter** *(string, optional)* – The string used to separate values. The default is whitespace.
- **create_using** *(Graph container, optional)* – Use specified container to build graph. The default is networkx.Graph, an undirected graph.
- **nodetype** *(int, float, str, Python type, optional)* – Convert node data from strings to specified type
- **encoding** *(string, optional)* – Specify which encoding to use when reading file.

Returns G – A networkx Graph or other type specified with create_using

Return type graph

Notes

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset - or tuples of those, etc.)

Example edgelist file format.

With numeric edge data:

```python
read with
>>> G=nx.read_weighted_edgelist(fh)
source target data
a b 1
a c 3.14159
d e 42
```

9.3.5 write_weighted_edgelist

write_weighted_edgelist(G, path, comments='#', delimiter=' ', encoding='utf-8')

Write graph G as a list of edges with numeric weights.

Parameters

- **G** *(graph)* – A NetworkX graph
- **path** *(file or string)* – File or filename to write. If a file is provided, it must be opened in 'wb' mode. Filenames ending in .gz or .bz2 will be compressed.
- **comments** *(string, optional)* – The character used to indicate the start of a comment
- **delimiter** *(string, optional)* – The string used to separate values. The default is whitespace.
• **encoding** *(string, optional)* – Specify which encoding to use when writing file.

**Examples**

```python
g=nx.Graph()
g.add_edge(1,2,weight=7)
nx.write_weighted_edgelist(G, 'test.weighted.edgelist')
```

**See also:**

`read_edgelist()`, `write_edgelist()`, `write_weighted_edgelist()`

### 9.3.6 generate_edgelist

generate_edgelist *(G, delimiter=' ', data=True)*

Generate a single line of the graph G in edge list format.

**Parameters**

- **G** *(NetworkX graph)* –
- **delimiter** *(string, optional)* – Separator for node labels
- **data** *(bool or list of keys)* – If False generate no edge data. If True use a dictionary representation of edge data. If a list of keys use a list of data values corresponding to the keys.

**Returns** `lines` – Lines of data in adjlist format.

**Return type** string

**Examples**

```python
g = nx.lollipop_graph(4, 3)
g[1][2]['weight'] = 3
g[3][4]['capacity'] = 12
```
>>> for line in nx.generate_edgelist(G, data=['weight']):
...     print(line)
0 1
0 2
0 3
1 2 3
1 3
2 3
3 4
4 5
5 6

See also:
write_adjlist(), read_adjlist()

9.3.7 parse_edgelist

parse_edgelist (lines, comments='#', delimiter=None, create_using=None, nodetype=None, data=True)
Parse lines of an edge list representation of a graph.

Parameters

- **lines** (list or iterator of strings) – Input data in edgelist format
- **comments** (string, optional) – Marker for comment lines
- **delimiter** (string, optional) – Separator for node labels
- **create_using** (NetworkX graph container, optional) – Use given NetworkX graph for holding nodes or edges.
- **nodetype** (Python type, optional) – Convert nodes to this type.
- **data** (bool or list of (label, type) tuples) – If False generate no edge data or if True use a dictionary representation of edge data or a list tuples specifying dictionary key names and types for edge data.

Returns

- **G** – The graph corresponding to lines

Return type

- NetworkX Graph

Examples

Edgelist with no data:

```python
>>> lines = ['1 2',
... '2 3',
... '3 4']
>>> G = nx.parse_edgelist(lines, nodetype=int)
>>> G.nodes()
{1, 2, 3, 4}
>>> G.edges()
{(1, 2), (2, 3), (3, 4)}
```
Edgelist with data in Python dictionary representation:

```python
>>> lines = ["1 2 {'weight':3}",
... "2 3 {'weight':27}",
... "3 4 {'weight':3.0}"

>>> G = nx.parse_edgelist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges(data = True)
[(1, 2, {'weight': 3}), (2, 3, {'weight': 27}), (3, 4, {'weight': 3.0})]
```

Edgelist with data in a list:

```python
>>> lines = ["1 2 3",
"2 3 27",
"3 4 3.0"

>>> G = nx.parse_edgelist(lines, nodetype = int, data=(('weight',float),))
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges(data = True)
[(1, 2, {'weight': 3.0}), (2, 3, {'weight': 27.0}), (3, 4, {'weight': 3.0})]
```

See also:

`read_weighted_edgelist()`

9.4 GEXF

9.4.1 GEXF

Read and write graphs in GEXF format.

GEXF (Graph Exchange XML Format) is a language for describing complex network structures, their associated data and dynamics.

This implementation does not support mixed graphs (directed and undirected edges together).

Format

GEXF is an XML format. See http://gexf.net/format/schema.html for the specification and http://gexf.net/format/basic.html for examples.

```
read_gexf(path[, node_type, relabel, version]) Read graph in GEXF format from path.
write_gexf(G, path[, encoding, prettyprint, ...]) Write G in GEXF format to path.
relabel_gexf_graph(G) Relabel graph using "label" node keyword for node label.
```

9.4.2 read_gexf

`read_gexf` *(path, node_type=None, relabel=False, version='1.1draft')*

Read graph in GEXF format from path.

“GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associated data and dynamics”¹.

¹ GEXF graph format, http://gexf.net/format/
Parameters

- **path** *(file or string)* – File or file name to write. File names ending in .gz or .bz2 will be compressed.
- **node_type** *(Python type (default: None))* – Convert node ids to this type if not None.
- **relabel** *(bool (default: False))* – If True relabel the nodes to use the GEXF node “label” attribute instead of the node “id” attribute as the NetworkX node label.

**Returns graph** – If no parallel edges are found a Graph or DiGraph is returned. Otherwise a MultiGraph or MultiDiGraph is returned.

**Return type** NetworkX graph

**Notes**

This implementation does not support mixed graphs (directed and undirected edges together).

**References**

9.4.3 write_gexf

write_gexf *(G, path, encoding='utf-8', prettyprint=True, version='1.1draft')*

Write G in GEXF format to path.

“GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associated data and dynamics”\(^2\).

**Parameters**

- **G** *(graph)* – A NetworkX graph
- **path** *(file or string)* – File or file name to write. File names ending in .gz or .bz2 will be compressed.
- **encoding** *(string (optional))* – Encoding for text data.
- **prettyprint** *(bool (optional))* – If True use line breaks and indenting in output XML.

**Examples**

```python
>>> G=nx.path_graph(4)
>>> nx.write_gexf(G, "test.gexf")
```

**Notes**

This implementation does not support mixed graphs (directed and undirected edges together).

The node id attribute is set to be the string of the node label. If you want to specify an id use set it as node data, e.g. node['a']['id']=1 to set the id of node ‘a’ to 1.

\(^2\) GEXF graph format, http://gexf.net/format/
9.4.4 relabel_gexf_graph

relabel_gexf_graph (G)
Relabel graph using “label” node keyword for node label.

Parameters

- **G** (graph) – A NetworkX graph read from GEXF data

Returns

- **H** – A NetworkX graph with relabeled nodes

Return type

- graph

Notes

This function relabels the nodes in a NetworkX graph with the “label” attribute. It also handles relabeling the specific GEXF node attributes “parents”, and “pid”.

9.5 GML

Read graphs in GML format.

“GML, the G>raph Modelling Language, is our proposal for a portable file format for graphs. GML’s key features are portability, simple syntax, extensibility and flexibility. A GML file consists of a hierarchical key-value lists. Graphs can be annotated with arbitrary data structures. The idea for a common file format was born at the GD’95; this proposal is the outcome of many discussions. GML is the standard file format in the Graphlet graph editor system. It has been overtaken and adapted by several other systems for drawing graphs.”

See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

9.5.1 Format

See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html for format specification.

Example graphs in GML format: http://www-personal.umich.edu/~mejn/netdata/

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>read_gml(path[, label, destringizer])</td>
<td>Read graph in GML format from path.</td>
</tr>
<tr>
<td>write_gml(G, path[, stringizer])</td>
<td>Write a graph G in GML format to the file or file handle path.</td>
</tr>
<tr>
<td>parse_gml(lines[, label, destringizer])</td>
<td>Parse GML graph from a string or iterable.</td>
</tr>
<tr>
<td>generate_gml(G[, stringizer])</td>
<td>Generate a single entry of the graph G in GML format.</td>
</tr>
<tr>
<td>literal_destringizer(rep)</td>
<td>Convert a Python literal to the value it represents.</td>
</tr>
<tr>
<td>literal_stringizer(value)</td>
<td>Convert a value to a Python literal in GML representation.</td>
</tr>
</tbody>
</table>

9.5.2 read_gml

read_gml (path, label='label', destringizer=None)
Read graph in GML format from path.

Parameters

- **path** (filename or filehandle) – The filename or filehandle to read from.
- **label** (string, optional) – If not None, the parsed nodes will be renamed according to node

Chapter 9. Reading and writing graphs
attributes indicated by label. Default value: ’label’.

• **destringizer** *(callable, optional)* – A destringizer that recovers values stored as strings in GML. If it cannot convert a string to a value, a **ValueError** is raised. Default value: None.

**Returns** G – The parsed graph.

**Return type** NetworkX graph

**Raises** NetworkXError – If the input cannot be parsed.

**See also:**

`write_gml()`, `parse_gml()`

**Notes**

The GML specification says that files should be ASCII encoded, with any extended ASCII characters (iso8859-1) appearing as HTML character entities.

**References**

GML specification: http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

**Examples**

```python
>>> G = nx.path_graph(4)
>>> nx.write_gml(G, 'test.gml')
>>> H = nx.read_gml('test.gml')
```

### 9.5.3 write_gml

**write_gml** *(G, path, stringizer=None)*  
Write a graph G in GML format to the file or file handle path.

**Parameters**

• **G** *(NetworkX graph)* – The graph to be converted to GML.

• **path** *(filename or filehandle)* – The filename or filehandle to write. Files whose names end with .gz or .bz2 will be compressed.

• **stringizer** *(callable, optional)* – A stringizer which converts non-int/non-float/non-dict values into strings. If it cannot convert a value into a string, it should raise a **ValueError** to indicate that. Default value: None.

**Raises** NetworkXError – If stringizer cannot convert a value into a string, or the value to convert is not a string while stringizer is None.

**See also:**

`read_gml()`, `generate_gml()`
Notes

Graph attributes named 'directed', 'multigraph', 'node' or 'edge', node attributes named 'id' or 'label', edge attributes named 'source' or 'target' (or 'key' if G is a multigraph) are ignored because these attribute names are used to encode the graph structure.

```python
>>> G = nx.path_graph(4)
>>> nx.write_gml(G, "test.gml")
```

Filenames ending in .gz or .bz2 will be compressed.

```python
>>> nx.write_gml(G, "test.gml.gz")
```

9.5.4 parse_gml

**parse_gml** *(lines, label='label', destringizer=None)*

Parse GML graph from a string or iterable.

**Parameters**

- **lines** *(string or iterable of strings)* – Data in GML format.
- **label** *(string, optional)* – If not None, the parsed nodes will be renamed according to node attributes indicated by label. Default value: 'label'.
- **destringizer** *(callable, optional)* – A destringizer that recovers values stored as strings in GML. If it cannot convert a string to a value, a ValueError is raised. Default value: None.

**Returns** G – The parsed graph.

**Return type** NetworkX graph

**Raises** NetworkXError – If the input cannot be parsed.

**See also:**

*write_gml(), read_gml()*

**Notes**

This stores nested GML attributes as dictionaries in the NetworkX graph, node, and edge attribute structures.

**References**

GML specification: http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

9.5.5 generate_gml

**generate_gml** *(G, stringizer=None)*

Generate a single entry of the graph G in GML format.

**Parameters**

- **G** *(NetworkX graph)* – The graph to be converted to GML.
• **stringizer** *(callable, optional)* – A stringizer which converts non-int/float/dict values into strings. If it cannot convert a value into a string, it should raise a `ValueError` raised to indicate that. Default value: `None`.

**Returns** lines – Lines of GML data. Newlines are not appended.

**Return type** generator of strings

**Raises** `NetworkXError` – If `stringizer` cannot convert a value into a string, or the value to convert is not a string while `stringizer` is `None`.

**Notes**

Graph attributes named ‘directed’, ‘multigraph’, ‘node’ or ‘edge’, node attributes named ‘id’ or ‘label’, edge attributes named ‘source’ or ‘target’ (or ‘key’ if `G` is a multigraph) are ignored because these attribute names are used to encode the graph structure.

### 9.5.6 literal_destringizer

**literal_destringizer** *(rep)*

Convert a Python literal to the value it represents.

**Parameters** rep *(string)* – A Python literal.

**Returns** value – The value of the Python literal.

**Return type** `object`

**Raises** `ValueError` – If `rep` is not a Python literal.

### 9.5.7 literal_stringizer

**literal_stringizer** *(value)*

Convert a value to a Python literal in GML representation.

**Parameters** value *(object)* – The value to be converted to GML representation.

**Returns** rep – A double-quoted Python literal representing value. Unprintable characters are replaced by XML character references.

**Return type** `string`

**Raises** `ValueError` – If `value` cannot be converted to GML.

**Notes**

`literal_stringizer` is largely the same as `repr` in terms of functionality but attempts prefix `unicode` and `bytes` literals with `u` and `b` to provide better interoperability of data generated by Python 2 and Python 3. The original value can be recovered using the `networkx.readwrite.gml.literal_destringizer` function.
9.6 Pickle

9.6.1 Pickled Graphs

Read and write NetworkX graphs as Python pickles.

“The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, and “unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierarchy.”

Note that NetworkX graphs can contain any hashable Python object as node (not just integers and strings). For arbitrary data types it may be difficult to represent the data as text. In that case using Python pickles to store the graph data can be used.

Format

See http://docs.python.org/library/pickle.html

```
read_gpickle(path) Read graph object in Python pickle format.
write_gpickle(G, path[, protocol]) Write graph in Python pickle format.
```

9.6.2 read_gpickle

```
read_gpickle(path)
```

Read graph object in Python pickle format.

Pickles are a serialized byte stream of a Python object \(^3\). This format will preserve Python objects used as nodes or edges.

**Parameters**

- `path` *(file or string)* – File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed.

**Returns**

- `G` – A NetworkX graph

**Return type**

- `graph`

**Examples**

```
>>> G = nx.path_graph(4)
>>> nx.write_gpickle(G, "test.pickle")
>>> G = nx.read_gpickle("test.pickle")
```

**References**

9.6.3 write_gpickle

```
write_gpickle(G, path, protocol=2)
```

Write graph in Python pickle format.

\(^3\) http://docs.python.org/library/pickle.html
Pickles are a serialized byte stream of a Python object \(^4\). This format will preserve Python objects used as nodes or edges.

**Parameters**

- **G (graph)** – A NetworkX graph
- **path (file or string)** – File or filename to write. Filenames ending in .gz or .bz2 will be compressed.

**Examples**

```python
>>> G = nx.path_graph(4)
>>> nx.write_gpickle(G, "test.gpickle")
```

**References**

9.7 GraphML

9.7.1 GraphML

Read and write graphs in GraphML format.

This implementation does not support mixed graphs (directed and undirected edges together), hyperedges, nested graphs, or ports.

“GraphML is a comprehensive and easy-to-use file format for graphs. It consists of a language core to describe the structural properties of a graph and a flexible extension mechanism to add application-specific data. Its main features include support of

- directed, undirected, and mixed graphs,
- hypergraphs,
- hierarchical graphs,
- graphical representations,
- references to external data,
- application-specific attribute data, and
- light-weight parsers.

Unlike many other file formats for graphs, GraphML does not use a custom syntax. Instead, it is based on XML and hence ideally suited as a common denominator for all kinds of services generating, archiving, or processing graphs.”

http://graphml.graphdrawing.org/

\(^4\) http://docs.python.org/library/pickle.html
Format

GraphML is an XML format. See http://graphml.graphdrawing.org/specification.html for the specification and http://graphml.graphdrawing.org/primer/graphml-primer.html for examples.
9.7.2 read_graphml

**read_graphml** *(path, node_type='str')*

Read graph in GraphML format from path.

**Parameters**

- **path** *(file or string)* – File or filename to read. Filenames ending in .gz or .bz2 will be compressed.
- **node_type** *(Python type (default: str))* – Convert node ids to this type

**Returns** graph – If no parallel edges are found a Graph or DiGraph is returned. Otherwise a MultiGraph or MultiDiGraph is returned.

**Return type** NetworkX graph

**Notes**

This implementation does not support mixed graphs (directed and undirected edges together), hypergraphs, nested graphs, or ports.

For multigraphs the GraphML edge “id” will be used as the edge key. If not specified then they “key” attribute will be used. If there is no “key” attribute a default NetworkX multigraph edge key will be provided.

Files with the yEd “yfiles” extension will can be read but the graphics information is discarded.

yEd compressed files (“file.graphmlz” extension) can be read by renaming the file to “file.graphml.gz”.

9.7.3 write_graphml

**write_graphml** *(G, path, encoding='utf-8', prettyprint=True)*

Write G in GraphML XML format to path

**Parameters**

- **G** *(graph)* – A networkx graph
- **path** *(file or string)* – File or filename to write. Filenames ending in .gz or .bz2 will be compressed.
- **encoding** *(string (optional))* – Encoding for text data.
- **prettyprint** *(bool (optional))* – If True use line breaks and indenting in output XML.

**Examples**

```python
>>> G=nx.path_graph(4)
>>> nx.write_graphml(G, "test.graphml")
```
Notes

This implementation does not support mixed graphs (directed and unidirected edges together) hyperedges, nested graphs, or ports.

9.8 JSON

9.8.1 JSON data

Generate and parse JSON serializable data for NetworkX graphs.

These formats are suitable for use with the d3.js examples http://d3js.org/

The three formats that you can generate with NetworkX are:

- node-link like in the d3.js example http://bl.ocks.org/mbostock/4062045
- tree like in the d3.js example http://bl.ocks.org/mbostock/4063550
- adjacency like in the d3.js example http://bost.ocks.org/mike/miserables/

\[
\text{node\_link\_data}(G[, attrs]) \quad \text{Return data in node-link format that is suitable for JSON serialization and use in Javascript documents.}
\]

\[
\text{node\_link\_graph}(data[, directed, ...]) \quad \text{Return graph from node-link data format.}
\]

\[
\text{adjacency\_data}(G[, attrs]) \quad \text{Return data in adjacency format that is suitable for JSON serialization and use in Javascript documents.}
\]

\[
\text{adjacency\_graph}(data[, directed, ...]) \quad \text{Return graph from adjacency data format.}
\]

\[
\text{tree\_data}(G, root[, attrs]) \quad \text{Return data in tree format that is suitable for JSON serialization and use in Javascript documents.}
\]

\[
\text{tree\_graph}(data[, attrs]) \quad \text{Return graph from tree data format.}
\]

9.8.2 node\_link\_data

\[
\]

Return data in node-link format that is suitable for JSON serialization and use in Javascript documents.

Parameters

- G (NetworkX graph) –
- attrs (dict) – A dictionary that contains four keys ‘id’, ‘source’, ‘target’ and ‘key’. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: \(\text{dict}(\text{id}='\text{id}', \text{source}='\text{source}', \text{target}='\text{target}', \text{key}='\text{key}')\).

If some user-defined graph data use these attribute names as data keys, they may be silently dropped.

Returns data – A dictionary with node-link formatted data.

Return type dict

Raises NetworkXError – If values in attrs are not unique.

Examples
```python
>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.node_link_data(G)
```

To serialize with json
```python
>>> import json
>>> s = json.dumps(data)
```

**Notes**

Graph, node, and link attributes are stored in this format. Note that attribute keys will be converted to strings in order to comply with JSON.

The default value of attrs will be changed in a future release of NetworkX.

**See also:**

`node_link_graph()`, `adjacency_data()`, `tree_data()`

### 9.8.3 node_link_graph

```python
node_link_graph(data, directed=False, multigraph=True, attrs={‘source’: ‘source’, ‘target’: ‘target’, ‘key’: ‘key’, ‘id’: ‘id’})
```

Return graph from node-link data format.

**Parameters**

- **data (dict)** – node-link formatted graph data
- **directed (bool)** – If True, and direction not specified in data, return a directed graph.
- **multigraph (bool)** – If True, and multigraph not specified in data, return a multigraph.
- **attrs (dict)** – A dictionary that contains four keys ‘id’, ‘source’, ‘target’ and ‘key’. The corresponding values provide the attribute names for storing NetworkX-internal graph data. Default value: `dict(id='id', source='source', target='target', key='key')`.

**Returns**

- **G** – A NetworkX graph object

**Return type** NetworkX graph

**Examples**

```python
>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.node_link_data(G)
>>> H = json_graph.node_link_graph(data)
```

**Notes**

The default value of attrs will be changed in a future release of NetworkX.

**See also:**

`node_link_data()`, `adjacency_data()`, `tree_data()`
9.8.4 adjacency_data

adjacency_data (G, attrs={'id': 'id', 'key': 'key'})
Return data in adjacency format that is suitable for JSON serialization and use in Javascript documents.

Parameters

- G (NetworkX graph) –
- attrs (dict) – A dictionary that contains two keys ‘id’ and ‘key’. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: dict(id='id', key='key').
  If some user-defined graph data use these attribute names as data keys, they may be silently dropped.

Returns data – A dictionary with adjacency formatted data.

Return type dict

Raises NetworkXError – If values in attrs are not unique.

Examples

```python
>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.adjacency_data(G)
```

To serialize with json

```python
>>> import json
>>> s = json.dumps(data)
```

Notes

Graph, node, and link attributes will be written when using this format but attribute keys must be strings if you want to serialize the resulting data with JSON.

The default value of attrs will be changed in a future release of NetworkX.

See also:

adjacency_graph(), node_link_data(), tree_data()
• **attrs** (*dict*) – A dictionary that contains two keys ‘id’ and ‘key’. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: `dict(id='id', key='key')`.

## Examples

```python
>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.adjacency_data(G)
>>> H = json_graph.adjacency_graph(data)
```

## Notes

The default value of attrs will be changed in a future release of NetworkX.

See also:

- `adjacency_graph()`, `node_link_data()`, `tree_data()`

### 9.8.6 tree_data

**tree_data** *(G, root, attrs={'children': 'children', 'id': 'id'})*

Return data in tree format that is suitable for JSON serialization and use in Javascript documents.

**Parameters**

- **G** *(NetworkX graph)* – G must be an oriented tree
- **root** *(node)* – The root of the tree
- **attrs** (*dict*) – A dictionary that contains two keys ‘id’ and ‘children’. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: `dict(id='id', children='children')`.

If some user-defined graph data use these attribute names as data keys, they may be silently dropped.

**Returns** data – A dictionary with node-link formatted data.

**Return type** *dict*

**Raises** NetworkXError – If values in attrs are not unique.

## Examples

```python
>>> from networkx.readwrite import json_graph
>>> G = nx.DiGraph([(1,2)])
>>> data = json_graph.tree_data(G,root=1)
```

To serialize with json

```python
>>> import json
>>> s = json.dumps(data)
```
Notes

Node attributes are stored in this format but keys for attributes must be strings if you want to serialize with JSON.

Graph and edge attributes are not stored.

The default value of attrs will be changed in a future release of NetworkX.

See also:

```
tree_graph(), node_link_data(), node_link_data()
```

### 9.8.7 tree_graph

tree_graph (`data`, `attrs={'children': 'children', 'id': 'id'}`)

Return graph from tree data format.

**Parameters**
- `data` (`dict`) – Tree formatted graph data

**Returns**
- `G` (`NetworkX DiGraph`)
- `attrs` (`dict`) – A dictionary that contains two keys ‘id’ and ‘children’. The corresponding values provide the attribute names for storing NetworkX-internal graph data. The values should be unique. Default value: `dict(id='id', children='children')`.

**Examples**

```python
>>> from networkx.readwrite import json_graph
>>> G = nx.DiGraph([(1,2)])
>>> data = json_graph.tree_data(G, root=1)
>>> H = json_graph.tree_graph(data)
```

Notes

The default value of attrs will be changed in a future release of NetworkX.

See also:

```
tree_graph(), node_link_data(), adjacency_data()
```

### 9.9 LEDA

Read graphs in LEDA format.

LEDA is a C++ class library for efficient data types and algorithms.

#### 9.9.1 Format

See [http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html](http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html)
NetworkX Reference, Release 1.10

read_leda(path[, encoding])
Read graph in LEDA format from path.

parse_leda(lines)
Read graph in LEDA format from string or iterable.

9.9.2 read_leda

read_leda(path, encoding='UTF-8')
Read graph in LEDA format from path.

Parameters:
path (file or string) – File or filename to read. Filenames ending in .gz or .bz2 will be uncompressed.

Returns:
G

Return type:
NetworkX graph

Examples

G=nx.read_leda('file.leda')

References

9.9.3 parse_leda

parse_leda(lines)
Read graph in LEDA format from string or iterable.

Parameters:
lines (string or iterable) – Data in LEDA format.

Returns:
G

Return type:
NetworkX graph

Examples

G=nx.parse_leda(string)

References

9.10 YAML

9.10.1 YAML

Read and write NetworkX graphs in YAML format.

“YAML is a data serialization format designed for human readability and interaction with scripting languages.” See http://www.yaml.org for documentation.
Format

http://pyyaml.org/wiki/PyYAML
### 9.10.2 read_yaml

**read_yaml**(path)

Read graph in YAML format from path.

YAML is a data serialization format designed for human readability and interaction with scripting languages.

**Parameters**

- **path** *(file or string)* – File or filename to read. Filenames ending in .gz or .bz2 will be uncompressed.

**Returns**

- **G**

**Return type**

NetworkX graph

**Examples**

```python
>>> G=nx.path_graph(4)
>>> nx.write_yaml(G,'test.yaml')
>>> G=nx.read_yaml('test.yaml')
```

**References**

### 9.10.3 write_yaml

**write_yaml**(G, path[, encoding='UTF-8', **kwds])

Write graph G in YAML format to path.

YAML is a data serialization format designed for human readability and interaction with scripting languages.

**Parameters**

- **G** *(graph)* – A NetworkX graph
- **path** *(file or string)* – File or filename to write. Filenames ending in .gz or .bz2 will be compressed.
- **encoding** *(string, optional)* – Specify which encoding to use when writing file.

**Examples**

```python
>>> G=nx.path_graph(4)
>>> nx.write_yaml(G,'test.yaml')
```

---

5 [http://www.yaml.org](http://www.yaml.org)
6 [http://www.yaml.org](http://www.yaml.org)
9.11 SparseGraph6

9.11.1 Graph6

Graph6
Read and write graphs in graph6 format.

Format
“graph6 and sparse6 are formats for storing undirected graphs in a compact manner, using only printable ASCII characters. Files in these formats have text type and contain one line per graph.”


<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parse_graph6</td>
<td>Read a simple undirected graph in graph6 format from string.</td>
</tr>
<tr>
<td>read_graph6</td>
<td>Read simple undirected graphs in graph6 format from path.</td>
</tr>
<tr>
<td>generate_graph6</td>
<td>Generate graph6 format string from a simple undirected graph.</td>
</tr>
<tr>
<td>write_graph6</td>
<td>Write a simple undirected graph to path in graph6 format.</td>
</tr>
</tbody>
</table>

parse_graph6

Parse a simple undirected graph in graph6 format.

Parameters

- **string** - Data in graph6 format

Returns

- **G** - Graph

Return type

- **Graph**

Raises

- **NetworkXError** - If the string is unable to be parsed in graph6 format

Examples

```python
>>> G = nx.parse_graph6('A_')
>>> sorted(G.edges())
[(0, 1)]
```

See also:

- generate_graph6(), read_graph6(), write_graph6()

References

read_graph6

read_graph6 (path)
Read simple undirected graphs in graph6 format from path.

Parameters path (file or string) – File or filename to write.

Returns G – If the file contains multiple lines then a list of graphs is returned

Return type Graph or list of Graphs

Raises NetworkXError – If the string is unable to be parsed in graph6 format

Examples

```python
>>> nx.write_graph6(nx.Graph([(0,1)]), 'test.g6')
>>> G = nx.read_graph6('test.g6')
>>> sorted(G.edges())
[(0, 1)]
```

See also:

generate_graph6(), parse_graph6(), write_graph6()

References


generate_graph6

generate_graph6 (G, nodes=None, header=True)
Generate graph6 format string from a simple undirected graph.

Parameters

• G (Graph (undirected)) –

• nodes (list or iterable) – Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used.

• header (bool) – If True add ‘>>graph6<<’ string to head of data

Returns s – String in graph6 format

Return type string

Raises NetworkXError – If the graph is directed or has parallel edges

Examples

```python
>>> G = nx.Graph([(0, 1)])
>>> nx.generate_graph6(G)
'>>graph6<<A_'
```

See also:

read_graph6(), parse_graph6(), write_graph6()
Notes

The format does not support edge or node labels, parallel edges or self loops. If self loops are present they are silently ignored.

References


write_graph6

write_graph6(G, path, nodes=None, header=True)

Write a simple undirected graph to path in graph6 format.

Parameters

- G (Graph (undirected)) –
- path (file or string) – File or filename to write.
- nodes (list or iterable) – Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used.
- header (bool) – If True add ‘>>graph6<<’ string to head of data

Raises NetworkXError – If the graph is directed or has parallel edges

Examples

>>> G = nx.Graph([(0, 1)])
>>> nx.write_graph6(G, 'test.g6')

See also:

generate_graph6(), parse_graph6(), read_graph6()
Format

“graph6 and sparse6 are formats for storing undirected graphs in a compact manner, using only printable ASCII characters. Files in these formats have text type and contain one line per graph.”


<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parse_sparse6</td>
<td>Read an undirected graph in sparse6 format from string.</td>
</tr>
<tr>
<td>read_sparse6</td>
<td>Read an undirected graph in sparse6 format from path.</td>
</tr>
<tr>
<td>generate_sparse6</td>
<td>Generate sparse6 format string from an undirected graph.</td>
</tr>
<tr>
<td>write_sparse6</td>
<td>Write graph G to given path in sparse6 format.</td>
</tr>
</tbody>
</table>

**parse_sparse6**

**parse_sparse6**(string)

Read an undirected graph in sparse6 format from string.

**Parameters**

- **string** *(string)* – Data in sparse6 format

**Returns**

- **G** – Graph

**Raises**

- NetworkXError – If the string is unable to be parsed in sparse6 format

**Examples**

```python
>>> G = nx.parse_sparse6(':A_
```

```python
>>> sorted(G.edges())
[(0, 1), (0, 1), (0, 1)]
```

**See also:**

- `generate_sparse6()`, `read_sparse6()`, `write_sparse6()`

**References**


**read_sparse6**

**read_sparse6**(path)

Read an undirected graph in sparse6 format from path.

**Parameters**

- **path** *(file or string)* – File or filename to write.

**Returns**

- **G** – If the file contains multiple lines then a list of graphs is returned

**Return type**

- Graph/Multigraph or list of Graphs/MultiGraphs

**Raises**

- NetworkXError – If the string is unable to be parsed in sparse6 format
Examples

```python
>>> nx.write_sparse6(nx.Graph([(0, 1), (0, 1), (0, 1)]), 'test.s6')
>>> G = nx.read_sparse6('test.s6')
>>> sorted(G.edges())
[(0, 1)]
```

See also:

`generate_sparse6()`, `read_sparse6()`, `parse_sparse6()`

References

Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt

generate_sparse6

generate_sparse6(G, nodes=None, header=True)

Generate sparse6 format string from an undirected graph.

Parameters

- **G** *(Graph (undirected)) –*
- **nodes** *(list or iterable) – Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used.*
- **header** *(bool) – If True add ’>>sparse6<<’ string to head of data*

Returns s – String in sparse6 format

Return type string

Raises NetworkXError – If the graph is directed

Examples

```python
>>> G = nx.MultiGraph([(0, 1), (0, 1), (0, 1)])
>>> nx.generate_sparse6(G)
'>>sparse6<<:A_'
```

See also:

`read_sparse6()`, `parse_sparse6()`, `write_sparse6()`

Notes

The format does not support edge or node labels.

References

write_sparse6

write_sparse6(G, path, nodes=None, header=True)
Write graph G to given path in sparse6 format.

:param G: Graph (undirected)
:type G: Graph (undirected)
:param path: File or filename to write

Parameters

- **nodes** (list or iterable) – Nodes are labeled 0...n-1 in the order provided. If None the ordering given by G.nodes() is used.
- **header** (bool) – If True add ‘>>sparse6<<’ string to head of data

Raises NetworkXError – If the graph is directed

Examples

```python
>>> G = nx.Graph([(0, 1), (0, 1), (0, 1)])
>>> nx.write_sparse6(G, 'test.s6')
```

See also:
read_sparse6(), parse_sparse6(), generate_sparse6()

Notes

The format does not support edge or node labels.

References


9.12 Pajek

9.12.1 Pajek

Read graphs in Pajek format.
This implementation handles directed and undirected graphs including those with self loops and parallel edges.

Format


read_pajek(path[, encoding])	Read graph in Pajek format from path.
write_pajek(G, path[, encoding])	Write graph in Pajek format to path.
parse_pajek(lines)	Parse Pajek format graph from string or iterable.
9.12.2 read_pajek

read_pajek(path, encoding='UTF-8')
Read graph in Pajek format from path.

Parameters
path (file or string) -- File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed.

Returns
G

Return type
NetworkX MultiGraph or MultiDiGraph.

Examples

```python
>>> G=nx.path_graph(4)
>>> nx.write_pajek(G, "test.net")
>>> G=nx.read_pajek("test.net")
```
To create a Graph instead of a MultiGraph use

```python
>>> G1=nx.Graph(G)
```

References


9.12.3 write_pajek

write_pajek(G, path, encoding='UTF-8')
Write graph in Pajek format to path.

Parameters
- G (graph) -- A Networkx graph
- path (file or string) -- File or filename to write. Filenames ending in .gz or .bz2 will be compressed.

Examples

```python
>>> G=nx.path_graph(4)
>>> nx.write_pajek(G, "test.net")
```

References


9.12.4 parse_pajek

parse_pajek(lines)
Parse Pajek format graph from string or iterable.
Parameters **lines** *(string or iterable)* – Data in Pajek format.

Returns **G**

Return type NetworkX graph

See also:

*read_pajek()*

## 9.13 GIS Shapefile

### 9.13.1 Shapefile

Generates a networkx.DiGraph from point and line shapefiles.

“The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software. It is developed and regulated by Esri as a (mostly) open specification for data interoperability among Esri and other software products.” See [http://en.wikipedia.org/wiki/Shapefile](http://en.wikipedia.org/wiki/Shapefile) for additional information.

<table>
<thead>
<tr>
<th>read_shp(path, simplify)</th>
<th>Generates a networkx.DiGraph from shapefiles.</th>
</tr>
</thead>
<tbody>
<tr>
<td>write_shp(G, outdir)</td>
<td>Writes a networkx.DiGraph to two shapefiles, edges and nodes.</td>
</tr>
</tbody>
</table>

### 9.13.2 read_shp

**read_shp**(path, simplify=True)  
Generates a networkx.DiGraph from shapefiles. Point geometries are translated into nodes, lines into edges. Coordinate tuples are used as keys. Attributes are preserved, line geometries are simplified into start and end coordinates. Accepts a single shapefile or directory of many shapefiles.

“The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software.”

Parameters

- **path** *(file or string)* – File, directory, or filename to read.
- **simplify** *(bool)* – If True, simplify line geometries to start and end coordinates. If False, and line feature geometry has multiple segments, the non-geometric attributes for that feature will be repeated for each edge comprising that feature.

Returns **G**

Return type NetworkX graph

Examples

```python
>>> G=nx.read_shp('test.shp')
```

9.13.3 write_shp

write_shp(G, outdir)

Writes a networkx.DiGraph to two shapefiles, edges and nodes. Nodes and edges are expected to have a Well Known Binary (Wkb) or Well Known Text (Wkt) key in order to generate geometries. Also acceptable are nodes with a numeric tuple key (x,y).

“The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software.”

Parameters

outdir (directory path) – Output directory for the two shapefiles.

Returns

Return type None

Examples

nx.write_shp(digraph, ‘/shapefiles’) # doctest +SKIP

References

8 http://en.wikipedia.org/wiki/Shapefile
NetworkX provides basic functionality for visualizing graphs, but its main goal is to enable graph analysis rather than perform graph visualization. In the future, graph visualization functionality may be removed from NetworkX or only available as an add-on package.

Proper graph visualization is hard, and we highly recommend that people visualize their graphs with tools dedicated to that task. Notable examples of dedicated and fully-featured graph visualization tools are Cytoscape, Gephi, Graphviz and, for LaTeX typesetting, PGF/TikZ. To use these and other such tools, you should export your NetworkX graph into a format that can be read by those tools. For example, Cytoscape can read the GraphML format, and so, `networkx.write_graphml(G)` might be an appropriate choice.

### 10.1 Matplotlib

#### 10.1.1 Matplotlib

Draw networks with matplotlib.

See also:

- [matplotlib](http://matplotlib.org/)
- [pygraphviz](http://pygraphviz.github.io/)

```
 draw(G[, pos, ax, hold]) Draw the graph G with Matplotlib.
 draw_networkx(G[, pos, arrows, with_labels]) Draw the graph G using Matplotlib.
 draw_networkx_nodes(G, pos[, nodelist, ...]) Draw the nodes of the graph G.
 draw_networkx_edges(G, pos[, edgelist, ...]) Draw the edges of the graph G.
 draw_networkx_labels(G, pos[, labels, ...]) Draw node labels on the graph G.
 draw_networkx_edge_labels(G, pos[, ...]) Draw edge labels.
 draw_circular(G, **kwargs) Draw the graph G with a circular layout.
 draw_random(G, **kwargs) Draw the graph G with a random layout.
 draw_spectral(G, **kwargs) Draw the graph G with a spectral layout.
 draw_spring(G, **kwargs) Draw the graph G with a spring layout.
 draw_shell(G, **kwargs) Draw networkx graph with shell layout.
 draw_graphviz(G[, prog]) Draw networkx graph with graphviz layout.
```

### 10.1.2 draw

```
 draw (G, pos=None, ax=None, hold=None, **kwds)
 Draw the graph G with Matplotlib.
```
Draw the graph as a simple representation with no node labels or edge labels and using the full Matplotlib figure area and no axis labels by default. See draw_networkx() for more full-featured drawing that allows title, axis labels etc.

Parameters

- **G (graph)** – A networkx graph
- **pos (dictionary, optional)** – A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions.
- **ax (Matplotlib Axes object, optional)** – Draw the graph in specified Matplotlib axes.
- **hold (bool, optional)** – Set the Matplotlib hold state. If True subsequent draw commands will be added to the current axes.
- ****kwds – See networkx.draw_networkx() for a description of optional keywords.

Examples

```python
>>> G = nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G, pos=nx.spring_layout(G)) # use spring layout
```

See also:

draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_labels(), draw_networkx_edge_labels()

Notes

This function has the same name as pylab.draw and pyplot.draw so beware when using

```python
>>> from networkx import *
```

since you might overwrite the pylab.draw function.

With pyplot use

```python
>>> import matplotlib.pyplot as plt
>>> import networkx as nx
>>> G = nx.dodecahedral_graph()
>>> nx.draw(G) # networkx draw()
>>> plt.draw() # pyplot draw()
```

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

### 10.1.3 draw_networkx

draw_networkx(G, pos=None, arrows=True, with_labels=True, **kwds)

Draw the graph G using Matplotlib.

Draw the graph with Matplotlib with options for node positions, labeling, titles, and many other drawing features. See draw() for simple drawing without labels or axes.

Parameters

- **G (graph)** – A networkx graph
• **pos** (dictionary, optional) – A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions.

• **arrows** (bool, optional (default=True)) – For directed graphs, if True draw arrowheads.

• **with_labels** (bool, optional (default=True)) – Set to True to draw labels on the nodes.

• **ax** (Matplotlib Axes object, optional) – Draw the graph in the specified Matplotlib axes.

• **nodelist** (list, optional (default G.nodes())) – Draw only specified nodes

• **edgelist** (list, optional (default=G.edges())) – Draw only specified edges

• **node_size** (scalar or array, optional (default=300)) – Size of nodes. If an array is specified it must be the same length as nodelist.

• **node_color** (color string, or array of floats, (default='r')) – Node color. Can be a single color format string, or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin,vmax parameters. See matplotlib.scatter for more details.

• **node_shape** (string, optional (default='o')) – The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8'.

• **alpha** (float, optional (default=1.0)) – The node and edge transparency

• **cmap** (Matplotlib colormap, optional (default=None)) – Colormap for mapping intensities of nodes

• **vmin, vmax** (float, optional (default=None)) – Minimum and maximum for node colormap scaling

• **linewidths** ([None | scalar | sequence]) – Line width of symbol border (default =1.0)

• **width** (float, optional (default=1.0)) – Line width of edges

• **edge_color** (color string, or array of floats (default='r')) – Edge color. Can be a single color format string, or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters.

• **edge_cmap** (Matplotlib colormap, optional (default=None)) – Colormap for mapping intensities of edges

• **edge_vmin, edge_vmax** (floats, optional (default=None)) – Minimum and maximum for edge colormap scaling

• **style** (string, optional (default='solid')) – Edge line style (solid|dashed|dotted,dashdot)

• **labels** (dictionary, optional (default=None)) – Node labels in a dictionary keyed by node of text labels

• **font_size** (int, optional (default=12)) – Font size for text labels

• **font_color** (string, optional (default='k' black)) – Font color string

• **font_weight** (string, optional (default='normal')) – Font weight

• **font_family** (string, optional (default='sans-serif')) – Font family

• **label** (string, optional) – Label for graph legend
Notes

For directed graphs, “arrows” (actually just thicker stubs) are drawn at the head end. Arrows can be turned off with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky.

Examples

```python
>>> G = nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G, pos=nx.spring_layout(G)) # use spring layout

>>> import matplotlib.pyplot as plt
>>> limits = plt.axis('off') # turn off axis
```

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

See also:

draw(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_labels(), draw_networkx_edge_labels()

10.1.4 draw_networkx_nodes

draw_networkx_nodes (G, pos, nodelist=None, node_size=300, node_color='r', node_shape='o', alpha=1.0, cmap=None, vmin=None, vmax=None, ax=None, linewidths=None, label=None, **kwds)

Draw the nodes of the graph G.

This draws only the nodes of the graph G.

Parameters

- **G** (graph) – A networkx graph
- **pos** (dictionary) – A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2.
- **ax** (Matplotlib Axes object, optional) – Draw the graph in the specified Matplotlib axes.
- **nodelist** (list, optional) – Draw only specified nodes (default G.nodes())
- **node_size** (scalar or array) – Size of nodes (default=300). If an array is specified it must be the same length as nodelist.
- **node_color** (color string, or array of floats) – Node color. Can be a single color format string (default='r'), or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin,vmax parameters. See matplotlib.scatter for more details.
- **node_shape** (string) – The shape of the node. Specification is as matplotlib.scatter marker, one of ‘so^>v<dph8’ (default='o').
- **alpha** (float) – The node transparency (default=1.0)
- **cmap** (Matplotlib colormap) – Colormap for mapping intensities of nodes (default=None)
- **vmin, vmax** (floats) – Minimum and maximum for node colormap scaling (default=None)
- **linewidths** ([None | scalar | sequence]) – Line width of symbol border (default =1.0)
• **label** ([`None` | `string`]) – Label for legend

**Returns**  `PathCollection` of the nodes.

**Return type**  `matplotlib.collections.PathCollection`

**Examples**

```python
>>> G = nx.dodecahedral_graph()
>>> nodes = nx.draw_networkx_nodes(G, pos=nx.spring_layout(G))
```

Also see the NetworkX drawing examples at [http://networkx.github.io/documentation/latest/gallery.html](http://networkx.github.io/documentation/latest/gallery.html)

See also:

`draw()`, `draw_networkx()`, `draw_networkx_edges()`, `draw_networkx_labels()`, `draw_networkx_edge_labels()`

### 10.1.5 draw_networkx_edges

**draw_networkx_edges**  

```python
def draw_networkx_edges(G, pos, edgelist=None, width=1.0, edge_color='k', style='solid', alpha=1.0, edge_cmap=None, edge_vmin=None, edge_vmax=None, ax=None, arrows=True, label=None, **kwds)
```

Draw the edges of the graph G.

This draws only the edges of the graph G.

**Parameters**

- **G** (*graph*) – A networkx graph
- **pos** (*dictionary*) – A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2.
- **edgelist** (*collection of edge tuples*) – Draw only specified edges (default=G.edges())
- **width** (*float, or array of floats*) – Line width of edges (default=1.0)
- **edge_color** (*color string, or array of floats*) – Edge color. Can be a single color format string (default=’r’), or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters.
- **style** (*string*) – Edge line style (default=’solid’) (solid|dashed|dotted,dashdot)
- **alpha** (*float*) – The edge transparency (default=1.0)
- **cmap** (*edge*) – Colormap for mapping intensities of edges (default=None)
- **edge_vmin, edge_vmax** (*floats*) – Minimum and maximum for edge colormap scaling (default=None)
- **ax** (*Matplotlib Axes object, optional*) – Draw the graph in the specified Matplotlib axes.
- **arrows** (*bool, optional (default=True)) – For directed graphs, if True draw arrowheads.
- **label** ([`None` | `string`]) – Label for legend

**Returns**  `LineCollection` of the edges

**Return type**  `matplotlib.collection.LineCollection`
Notes

For directed graphs, “arrows” (actually just thicker stubs) are drawn at the head end. Arrows can be turned off with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky.

Examples

```python
>>> G=nx.dodecahedral_graph()
>>> edges=nx.draw_networkx_edges(G,pos=nx.spring_layout(G))
```

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

See also:

draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_labels(), draw_networkx_edge_labels()
10.1.7 draw_networkx_edge_labels

draw_networkx_edge_labels($G$, pos, edge_labels=None, label_pos=0.5, font_size=10, font_color='k', font_family='sans-serif', font_weight='normal', alpha=1.0, bbox=None, ax=None, rotate=True, **kwds)

Draw edge labels.

Parameters

• $G$ (graph) – A networkx graph

• pos (dictionary) – A dictionary with nodes as keys and positions as values. Positions should be sequences of length 2.

• ax (Matplotlib Axes object, optional) – Draw the graph in the specified Matplotlib axes.

• alpha (float) – The text transparency (default=1.0)

• edge_labels (dictionary) – Edge labels in a dictionary keyed by edge two-tuple of text labels (default=None). Only labels for the keys in the dictionary are drawn.

• label_pos (float) – Position of edge label along edge (0=head, 0.5=center, 1=tail)

• font_size (int) – Font size for text labels (default=12)

• font_color (string) – Font color string (default='k' black)

• font_weight (string) – Font weight (default='normal')

• font_family (string) – Font family (default='sans-serif')

• bbox (Matplotlib bbox) – Specify text box shape and colors.

• clip_on (bool) – Turn on clipping at axis boundaries (default=True)

Returns dict of labels keyed on the edges

Return type dict

Examples

```python
>>> G=nx.dodecahedral_graph()
>>> edge_labels=nx.draw_networkx_edge_labels(G,pos=nx.spring_layout(G))
```

Also see the NetworkX drawing examples at http://networkx.github.io/documentation/latest/gallery.html

See also:

draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_labels()

10.1.8 draw_circular

draw_circular($G$, **kwargs)

Draw the graph $G$ with a circular layout.

Parameters

• $G$ (graph) – A networkx graph

• **kwargs – See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function.
10.1.9 draw_random

draw_random(G, **kwargs)
Draw the graph G with a random layout.

Parameters

• G (graph) – A networkx graph
• **kwargs – See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function.

10.1.10 draw_spectral

draw_spectral(G, **kwargs)
Draw the graph G with a spectral layout.

Parameters

• G (graph) – A networkx graph
• **kwargs – See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function.

10.1.11 draw_spring

draw_spring(G, **kwargs)
Draw the graph G with a spring layout.

Parameters

• G (graph) – A networkx graph
• **kwargs – See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function.

10.1.12 draw_shell

draw_shell(G, **kwargs)
Draw networkx graph with shell layout.

Parameters

• G (graph) – A networkx graph
• **kwargs – See networkx.draw_networkx() for a description of optional keywords, with the exception of the pos parameter which is not used by this function.

10.1.13 draw_graphviz

draw_graphviz(G, prog='neato', **kwargs)
Draw networkx graph with graphviz layout.

Parameters

• G (graph) – A networkx graph
• prog (string, optional) – Name of Graphviz layout program
• **kwargs – See networkx.draw_networkx() for a description of optional keywords.

## 10.2 Graphviz AGraph (dot)

### 10.2.1 Graphviz AGraph

Interface to pygraphviz AGraph class.

**Examples**

```python
>>> G=nx.complete_graph(5)
>>> A=nx.to_agraph(G)
>>> H=nx.from_agraph(A)
```

See also:

Pygraphviz [http://pygraphviz.github.io/](http://pygraphviz.github.io/)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>from_agraph(A[, create_using])</code></td>
<td>Return a NetworkX Graph or DiGraph from a PyGraphviz graph.</td>
</tr>
<tr>
<td><code>to_agraph(N)</code></td>
<td>Return a pygraphviz graph from a NetworkX graph N.</td>
</tr>
<tr>
<td><code>write_dot(G, path)</code></td>
<td>Write NetworkX graph G to Graphviz dot format on path.</td>
</tr>
<tr>
<td><code>read_dot(path)</code></td>
<td>Return a NetworkX graph from a dot file on path.</td>
</tr>
<tr>
<td><code>graphviz_layout(G[, prog, root, args])</code></td>
<td>Create node positions for G using Graphviz.</td>
</tr>
<tr>
<td><code>pygraphviz_layout(G[, prog, root, args])</code></td>
<td>Create node positions for G using Graphviz.</td>
</tr>
</tbody>
</table>

### 10.2.2 from_agraph

**from_agraph** *(A, create_using=None)*

Return a NetworkX Graph or DiGraph from a PyGraphviz graph.

**Parameters**

- **A** ([PyGraphviz AGraph]) – A graph created with PyGraphviz
- **create_using** ([NetworkX graph class instance]) – The output is created using the given graph class instance

**Examples**

```python
>>> K5=nx.complete_graph(5)
>>> A=nx.to_agraph(K5)
>>> G=nx.from_agraph(A)
>>> G=nx.from_agraph(A)
```

**Notes**

The Graph G will have a dictionary G.graph_attr containing the default graphviz attributes for graphs, nodes and edges.

Default node attributes will be in the dictionary G.node_attr which is keyed by node.
Edge attributes will be returned as edge data in G. With edge_attr=False the edge data will be the Graphviz edge weight attribute or the value 1 if no edge weight attribute is found.

### 10.2.3 to_agraph

**to_agraph** *(N)*

Return a pygraphviz graph from a NetworkX graph N.

**Parameters**

- **N** (*NetworkX graph*) – A graph created with NetworkX

**Examples**

```python
>>> K5 = nx.complete_graph(5)
>>> A = nx.to_agraph(K5)
```

**Notes**

If N has an dict N.graph_attr an attempt will be made first to copy properties attached to the graph (see from_agraph) and then updated with the calling arguments if any.

### 10.2.4 write_dot

**write_dot** *(G, path)*

Write NetworkX graph G to Graphviz dot format on path.

**Parameters**

- **G** (*graph*) – A networkx graph
- **path** (*filename*) – Filename or file handle to write

### 10.2.5 read_dot

**read_dot** *(path)*

Return a NetworkX graph from a dot file on path.

**Parameters**

- **path** (*file or string*) – File name or file handle to read.

### 10.2.6 graphviz_layout

**graphviz_layout** *(G, prog='neato', root=None, args='')*

Create node positions for G using Graphviz.

**Parameters**

- **G** (*NetworkX graph*) – A graph created with NetworkX
- **prog** (*string*) – Name of Graphviz layout program
- **root** (*string, optional*) – Root node for twopi layout
- **args** (*string, optional*) – Extra arguments to Graphviz layout program

**Returns** (*dictionary*) – Dictionary of x,y, positions keyed by node.
Examples

```python
>>> G=nx.petersen_graph()
>>> pos=nx.graphviz_layout(G)
>>> pos=nx.graphviz_layout(G,prog='dot')
```

Notes

This is a wrapper for pygraphviz_layout.

10.2.7 pygraphviz_layout

`pygraphviz_layout(G, prog='neato', root=None, args='')`

Create node positions for G using Graphviz.

Parameters

- **G (NetworkX graph)** – A graph created with NetworkX
- **prog (string)** – Name of Graphviz layout program
- **root (string, optional)** – Root node for twopi layout
- **args (string, optional)** – Extra arguments to Graphviz layout program
- **Returns (dictionary)** – Dictionary of x,y, positions keyed by node.

Examples

```python
>>> G=nx.petersen_graph()
>>> pos=nx.graphviz_layout(G)
>>> pos=nx.graphviz_layout(G,prog='dot')
```

10.3 Graphviz with pydot

10.3.1 Pydot

Import and export NetworkX graphs in Graphviz dot format using pydot.

Either this module or nx_pygraphviz can be used to interface with graphviz.

See also:

- **Pydot** http://code.google.com/p/pydot/
- **Graphviz** http://www.research.att.com/sw/tools/graphviz/

**DOT**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>from_pydot(P)</code></td>
<td>Return a NetworkX graph from a Pydot graph.</td>
</tr>
<tr>
<td><code>to_pydot(N[, strict])</code></td>
<td>Return a pydot graph from a NetworkX graph N.</td>
</tr>
<tr>
<td><code>write_dot(G, path)</code></td>
<td>Write NetworkX graph G to Graphviz dot format on path.</td>
</tr>
<tr>
<td><code>read_dot(path)</code></td>
<td>Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path.</td>
</tr>
</tbody>
</table>
10.3.2 from_pydot

**from_pydot** *(P)*

Return a NetworkX graph from a Pydot graph.

**Parameters**

- **P** *(Pydot graph)* – A graph created with Pydot

**Returns**

- **G** – A MultiGraph or MultiDiGraph.

**Return type**

NetworkX multigraph

**Examples**

```python
>>> K5=nx.complete_graph(5)
>>> A=nx.to_pydot(K5)
>>> G=nx.from_pydot(A) # return MultiGraph
>>> G=nx.Graph(nx.from_pydot(A)) # make a Graph instead of MultiGraph
```

10.3.3 to_pydot

**to_pydot** *(N, strict=True)*

Return a pydot graph from a NetworkX graph N.

**Parameters**

- **N** *(NetworkX graph)* – A graph created with NetworkX

**Examples**

```python
>>> K5=nx.complete_graph(5)
>>> P=nx.to_pydot(K5)
```

**Notes**

10.3.4 write_dot

**write_dot** *(G, path)*

Write NetworkX graph G to Graphviz dot format on path.

Path can be a string or a file handle.

10.3.5 read_dot

**read_dot** *(path)*

Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path.

**Parameters**

- **path** *(filename or file handle)* –

**Returns**

- **G** – A MultiGraph or MultiDiGraph.
Return type  NetworkX multigraph

Notes
Use G=nx.Graph(nx.read_dot(path)) to return a Graph instead of a MultiGraph.

10.3.6 graphviz_layout

dot_layout(G, prog='neato', root=None, **kwds)
Create node positions using Pydot and Graphviz.
Returns a dictionary of positions keyed by node.

Examples
>>> G=nx.complete_graph(4)
>>> pos=nx.graphviz_layout(G)
>>> pos=nx.graphviz_layout(G,prog='dot')

Notes
This is a wrapper for pydot_layout.

10.3.7 pydot_layout

pydot_layout(G, prog='neato', root=None, **kwds)
Create node positions using Pydot and Graphviz.
Returns a dictionary of positions keyed by node.

Examples
>>> G=nx.complete_graph(4)
>>> pos=nx.pydot_layout(G)
>>> pos=nx.pydot_layout(G,prog='dot')

10.4 Graph Layout

10.4.1 Layout

Node positioning algorithms for graph drawing.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>circular_layout(G[, dim, scale, center])</td>
<td>Position nodes on a circle.</td>
</tr>
<tr>
<td>random_layout(G[, dim, center])</td>
<td>Position nodes uniformly at random in the unit square.</td>
</tr>
<tr>
<td>shell_layout(G[, nlst, dim, scale, center])</td>
<td>Position nodes in concentric circles.</td>
</tr>
<tr>
<td>spring_layout(G[, dim, k, pos, fixed, ...])</td>
<td>Position nodes using Fruchterman-Reingold force-directed algorithm.</td>
</tr>
<tr>
<td>spectral_layout(G[, dim, weight, scale, center])</td>
<td>Position nodes using the eigenvectors of the graph Laplacian.</td>
</tr>
</tbody>
</table>
10.4.2 circular_layout

circular_layout \((G, \text{dim}=2, \text{scale}=1, \text{center}=\text{None})\)
Position nodes on a circle.

Parameters

- \(G\) (NetworkX graph or list of nodes) –
- \(\text{dim}\) (int) – Dimension of layout, currently only \(\text{dim}=2\) is supported
- \(\text{scale}\) (float) – Scale factor for positions
- \(\text{center}\) (array-like or None) – Coordinate pair around which to center the layout.

Returns A dictionary of positions keyed by node

Return type \(\text{dict}\)

Examples

```python
>>> G = nx.path_graph(4)
>>> pos = nx.circular_layout(G)
```

This algorithm currently only works in two dimensions and does not try to minimize edge crossings.

10.4.3 random_layout

random_layout \((G, \text{dim}=2, \text{center}=\text{None})\)
Position nodes uniformly at random in the unit square.

For every node, a position is generated by choosing each of \(\text{dim}\) coordinates uniformly at random on the interval \([0.0, 1.0)\).

NumPy (http://scipy.org) is required for this function.

Parameters

- \(G\) (NetworkX graph or list of nodes) – A position will be assigned to every node in \(G\).
- \(\text{dim}\) (int) – Dimension of layout.
- \(\text{center}\) (array-like or None) – Coordinate pair around which to center the layout.

Returns \(\text{pos}\) – A dictionary of positions keyed by node

Return type \(\text{dict}\)

Examples

```python
>>> G = nx.lollipop_graph(4, 3)
>>> pos = nx.random_layout(G)
```

10.4.4 shell_layout

shell_layout \((G, \text{nlist}=\text{None}, \text{dim}=2, \text{scale}=1, \text{center}=\text{None})\)
Position nodes in concentric circles.
Parameters

- \( G \) (NetworkX graph or list of nodes)
- \( nlist \) (list of lists) – List of node lists for each shell.
- \( \text{dim} \) (int) – Dimension of layout, currently only \( \text{dim}=2 \) is supported
- \( \text{scale} \) (float) – Scale factor for positions
- \( \text{center} \) (array-like or None) – Coordinate pair around which to center the layout.

Returns

A dictionary of positions keyed by node

Return type dict

Examples

```python
>>> G = nx.path_graph(4)
>>> shells = [[0], [1, 2, 3]]
>>> pos = nx.shell_layout(G, shells)
```

This algorithm currently only works in two dimensions and does not try to minimize edge crossings.

### 10.4.5 spring_layout

**spring_layout** \((G, \text{dim}=2, k=\text{None}, \text{pos}=\text{None}, \text{fixed}=\text{None}, \text{iterations}=50, \text{weight}=\text{weight}', \text{scale}=1.0, \text{center}=\text{None})\)

Position nodes using Fruchterman-Reingold force-directed algorithm.

Parameters

- \( G \) (NetworkX graph or list of nodes)
- \( \text{dim} \) (int) – Dimension of layout
- \( k \) (float (default=\text{None})) – Optimal distance between nodes. If None the distance is set to \( 1/\sqrt{n} \) where \( n \) is the number of nodes. Increase this value to move nodes farther apart.

pos [dict or None optional (default=\text{None})] Initial positions for nodes as a dictionary with node as keys and values as a list or tuple. If None, then use random initial positions.

fixed [list or None optional (default=\text{None})] Nodes to keep fixed at initial position.

iterations [int optional (default=50)] Number of iterations of spring-force relaxation

weight [string or None optional (default=\text{weight}')] The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1.

scale [float (default=1.0)] Scale factor for positions. The nodes are positioned in a box of size \([0, \text{scale}] \times [0, \text{scale}]\).

center [array-like or None] Coordinate pair around which to center the layout.

Returns A dictionary of positions keyed by node

Return type dict
Examples

```python
>>> G=nx.path_graph(4)
>>> pos=nx.spring_layout(G)
```

# The same using longer function name >>> pos=nx.fruchterman_reingold_layout(G)

### 10.4.6 spectral_layout

**spectral_layout** *(G, dim=2, weight='weight', scale=1, center=None)*

Position nodes using the eigenvectors of the graph Laplacian.

**Parameters**

- **G** *(NetworkX graph or list of nodes)* –
- **dim** *(int)* – Dimension of layout
- **weight** *(string or None optional (default='weight'))* – The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1.
- **scale** *(float)* – Scale factor for positions
- **center** *(array-like or None)* – Coordinate pair around which to center the layout.

**Returns**
A dictionary of positions keyed by node

**Return type**
dict

**Examples**

```python
>>> G=nx.path_graph(4)
>>> pos=nx.spectral_layout(G)
```

**Notes**

Directed graphs will be considered as undirected graphs when positioning the nodes.

For larger graphs (>500 nodes) this will use the SciPy sparse eigenvalue solver (ARPACK).
11.1 Exceptions

Base exceptions and errors for NetworkX.

**class NetworkXException**
Base class for exceptions in NetworkX.

**class NetworkXError**
Exception for a serious error in NetworkX

**class NetworkXPointlessConcept**

**class NetworkXAlgorithmError**
Exception for unexpected termination of algorithms.

**class NetworkXUnfeasible**
Exception raised by algorithms trying to solve a problem instance that has no feasible solution.

**class NetworkXNoPath**
Exception for algorithms that should return a path when running on graphs where such a path does not exist.

**class NetworkXUnbounded**
Exception raised by algorithms trying to solve a maximization or a minimization problem instance that is unbounded.
12.1 Helper Functions

Miscellaneous Helpers for NetworkX.

These are not imported into the base networkx namespace but can be accessed, for example, as

```python
>>> import networkx

>>> networkx.utils.is_string_like('spam')
True
```

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_string_like(obj)</code></td>
<td>Check if obj is string.</td>
</tr>
<tr>
<td><code>flatten(obj[, result])</code></td>
<td>Return flattened version of (possibly nested) iterable object.</td>
</tr>
<tr>
<td><code>iterable(obj)</code></td>
<td>Return True if obj is iterable with a well-defined len().</td>
</tr>
<tr>
<td><code>is_list_of_ints(intlist)</code></td>
<td>Return True if list is a list of ints.</td>
</tr>
<tr>
<td><code>make_str(x)</code></td>
<td>Return the string representation of t.</td>
</tr>
<tr>
<td><code>generate_unique_node()</code></td>
<td>Generate a unique node label.</td>
</tr>
<tr>
<td><code>default_opener(filename)</code></td>
<td>Opens filename using system’s default program.</td>
</tr>
</tbody>
</table>

12.1.1 `is_string_like`

`is_string_like(obj)`
Check if obj is string.

12.1.2 `flatten`

`flatten(obj[, result]=None)`
Return flattened version of (possibly nested) iterable object.

12.1.3 `iterable`

`iterable(obj)`
Return True if obj is iterable with a well-defined len().

12.1.4 `is_list_of_ints`

`is_list_of_ints(intlist)`
Return True if list is a list of ints.
12.1.5 make_str

```python
make_str(x)
```

Return the string representation of t.

12.1.6 generate_unique_node

```python
generate_unique_node()
```

Generate a unique node label.

12.1.7 default_opener

```python
default_opener(filename)
```

Opens `filename` using system’s default program.

Parameters:

- `filename` (str) – The path of the file to be opened.

12.2 Data Structures and Algorithms

Union-find data structure.

```python
UnionFind.union(*objects)
```

Find the sets containing the objects and merge them all.

12.2.1 union

```python
UnionFind.union(*objects)
```

Find the sets containing the objects and merge them all.

12.3 Random Sequence Generators

Utilities for generating random numbers, random sequences, and random selections.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>create_degree_sequence(n, sfunction, max_tries)</code></td>
<td>Return sample sequence of length n from a Pareto distribution.</td>
</tr>
<tr>
<td><code>pareto_sequence(n, exponent)</code></td>
<td>Return sample sequence of length n from a Pareto distribution.</td>
</tr>
<tr>
<td><code>powerlaw_sequence(n, exponent)</code></td>
<td>Return sample sequence of length n from a power law distribution.</td>
</tr>
<tr>
<td><code>uniform_sequence(n)</code></td>
<td>Return sample sequence of length n from a uniform distribution.</td>
</tr>
<tr>
<td><code>cumulative_distribution(distribution)</code></td>
<td>Return normalized cumulative distribution from discrete distribution.</td>
</tr>
<tr>
<td><code>discrete_sequence(n, distribution, ...)</code></td>
<td>Return sample sequence of length n from a given discrete distribution.</td>
</tr>
<tr>
<td><code>zipf_sequence(n, alpha, xmin)</code></td>
<td>Return a sample sequence of length n from a Zipf distribution with exponent</td>
</tr>
<tr>
<td><code>zipf_rv(alpha, xmin, seed)</code></td>
<td>Return a random value chosen from the Zipf distribution.</td>
</tr>
<tr>
<td><code>random_weighted_sample(mapping, k)</code></td>
<td>Return k items without replacement from a weighted sample.</td>
</tr>
<tr>
<td><code>weighted_choice(mapping)</code></td>
<td>Return a single element from a weighted sample.</td>
</tr>
</tbody>
</table>

12.3.1 create_degree_sequence

```python
create_degree_sequence(n, sfunction=None, max_tries=50, **kwds)
```

Chapter 12. Utilities
12.3.2 pareto_sequence

pareto_sequence\((n, \text{exponent}=1.0)\)
Return sample sequence of length n from a Pareto distribution.

12.3.3 powerlaw_sequence

powerlaw_sequence\((n, \text{exponent}=2.0)\)
Return sample sequence of length n from a power law distribution.

12.3.4 uniform_sequence

uniform_sequence\((n)\)
Return sample sequence of length n from a uniform distribution.

12.3.5 cumulative_distribution

cumulative_distribution\((distribution)\)
Return normalized cumulative distribution from discrete distribution.

12.3.6 discrete_sequence

discrete_sequence\((n, \text{distribution}=\text{None, cdistribution}=\text{None})\)
Return sample sequence of length n from a given discrete distribution or discrete cumulative distribution.

One of the following must be specified.

distribution = histogram of values, will be normalized

cdistribution = normalized discrete cumulative distribution

12.3.7 zipf_sequence

zipf_sequence\((n, \alpha=2.0, x_{\text{min}}=1)\)
Return a sample sequence of length n from a Zipf distribution with exponent parameter alpha and minimum value xmin.

See also:
zipf_rv()

12.3.8 zipf_rv

zipf_rv\((\alpha, x_{\text{min}}=1, \text{seed}=\text{None})\)
Return a random value chosen from the Zipf distribution.

The return value is an integer drawn from the probability distribution
::math:
p(x)=\frac{x^{-\alpha}}{\zeta(\alpha, x_{\text{min}})},
where \(\zeta(\alpha, x_{\text{min}})\) is the Hurwitz zeta function.

Parameters
NetworkX Reference, Release 1.10

- **alpha** (*float*) – Exponent value of the distribution
- **xmin** (*int*) – Minimum value
- **seed** (*int*) – Seed value for random number generator

**Returns** x – Random value from Zipf distribution

**Return type** int

**Raises** ValueError – If xmin < 1 or If alpha <= 1

**Notes**

The rejection algorithm generates random values for a the power-law distribution in uniformly bounded expected time dependent on parameters. See [1] for details on its operation.

**Examples**

```python
>>> nx.zipf_rv(alpha=2, xmin=3, seed=42)
```

**References**


### 12.3.9 random_weighted_sample

**random_weighted_sample** *(mapping, k)*

Return k items without replacement from a weighted sample.

The input is a dictionary of items with weights as values.

### 12.3.10 weighted_choice

**weighted_choice** *(mapping)*

Return a single element from a weighted sample.

The input is a dictionary of items with weights as values.

### 12.4 Decorators

**open_file** *(path_arg[, mode])*  
Decorator to ensure clean opening and closing of files.

#### 12.4.1 open_file

**open_file** *(path_arg, mode='r')*

Decorator to ensure clean opening and closing of files.

**Parameters**
• **path_arg** (*int*) – Location of the path argument in args. Even if the argument is a named positional argument (with a default value), you must specify its index as a positional argument.

• **mode** (*str*) – String for opening mode.

**Returns** _open_file_ – Function which cleanly executes the io.

**Return type** *function*

**Examples**

Decorate functions like this:

```python
@open_file(0,'r')
def read_function(pathname):
 pass

@open_file(1,'w')
def write_function(G,pathname):
 pass

@open_file(1,'w')
def write_function(G, pathname='graph.dot'):
 pass

@open_file('path', 'w+')
def another_function(arg, **kwargs):
 path = kwargs['path']
 pass
```

### 12.5 Cuthill-McKee Ordering

Cuthill-McKee ordering of graph nodes to produce sparse matrices

**cuthill_mckee_ordering**(*G*, *heuristic*) Generate an ordering (permutation) of the graph nodes to make a sparse matrix.

**reverse_cuthill_mckee_ordering**(*G*, *heuristic*) Generate an ordering (permutation) of the graph nodes to make a sparse matrix.

#### 12.5.1 cuthill_mckee_ordering

**cuthill_mckee_ordering**(*G*, *heuristic=None*) Generate an ordering (permutation) of the graph nodes to make a sparse matrix.

Uses the Cuthill-McKee heuristic (based on breadth-first search) \(^1\).

**Parameters**

- **G (graph)** – A NetworkX graph

- **heuristic (function, optional)** – Function to choose starting node for RCM algorithm. If None a node from a psuedo-peripheral pair is used. A user-defined function can be supplied that takes a graph object and returns a single node.

Returns nodes – Generator of nodes in Cuthill-McKee ordering.

Return type generator

Examples

```python
>>> from networkx.utils import cuthill_mckee_ordering
>>> G = nx.path_graph(4)
>>> rcm = list(cuthill_mckee_ordering(G))
>>> A = nx.adjacency_matrix(G, nodelist=rcm)
```

Smallest degree node as heuristic function:

```python
>>> def smallest_degree(G):
... return min(G, key=G.degree)
>>> rcm = list(cuthill_mckee_ordering(G, heuristic=smallest_degree))
```

See also:

reverse_cuthill_mckee_ordering()

Notes

The optimal solution the the bandwidth reduction is NP-complete \(^2\).

References

12.5.2 reverse_cuthill_mckee_ordering

reverse_cuthill_mckee_ordering (G, heuristic=None)

Generate an ordering (permutation) of the graph nodes to make a sparse matrix.

Uses the reverse Cuthill-McKee heuristic (based on breadth-first search) \(^3\).

Parameters

- **G** (graph) – A NetworkX graph
- **heuristic** (function, optional) – Function to choose starting node for RCM algorithm. If None a node from a pseudo-peripheral pair is used. A user-defined function can be supplied that takes a graph object and returns a single node.

Returns nodes – Generator of nodes in reverse Cuthill-McKee ordering.

Return type generator

Examples

```python
>>> from networkx.utils import reverse_cuthill_mckee_ordering
>>> G = nx.path_graph(4)
>>> rcm = list(reverse_cuthill_mckee_ordering(G))
>>> A = nx.adjacency_matrix(G, nodelist=rcm)
```


Smallest degree node as heuristic function:

```python
>>> def smallest_degree(G):
... return min(G, key=G.degree)
```  
```python
>>> rcm = list(reverse_cuthill_mckee_ordering(G, heuristic=smallest_degree))
```

See also:

cuthill_mckee_ordering()

Notes

The optimal solution the the bandwidth reduction is NP-complete\(^4\).

References

12.6 Context Managers

\[\text{reversed}(\ast\text{args}, \ast\ast\text{kwds})\]\hspace{1em}A context manager for temporarily reversing a directed graph in place.

12.6.1 reversed

\[\text{reversed}(\ast\text{args}, \ast\ast\text{kwds})\]\hspace{1em}A context manager for temporarily reversing a directed graph in place.

This is a no-op for undirected graphs.

Parameters \(G\) (graph) – A NetworkX graph.

---

NetworkX is distributed with the BSD license.

Copyright (C) 2004-2012, NetworkX Developers
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the NetworkX Developers nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
To cite NetworkX please use the following publication:

CHAPTER FIFTEEN

CREDITS

NetworkX was originally written by Aric Hagberg, Dan Schult, and Pieter Swart, and has been developed with the help of many others. Thanks to everyone who has improved NetworkX by contributing code, bug reports (and fixes), documentation, and input on design, features, and the future of NetworkX.

15.1 Contributions

This section aims to provide a list of people and projects that have contributed to networkx. It is intended to be an inclusive list, and anyone who has contributed and wishes to make that contribution known is welcome to add an entry into this file. Generally, no name should be added to this list without the approval of the person associated with that name.

Creating a comprehensive list of contributors can be difficult, and the list within this file is almost certainly incomplete. Contributors include testers, bug reporters, contributors who wish to remain anonymous, funding sources, academic advisors, end users, and even build/integration systems (such as TravisCI, coveralls, and readthedocs).

Do you want to make your contribution known? If you have commit access, edit this file and add your name. If you do not have commit access, feel free to open an issue, submit a pull request, or get in contact with one of the official team members.

A supplementary (but still incomplete) list of contributors is given by the list of names that have commits in networkx's git repository. This can be obtained via:

```
git log --raw | grep "^Author: " | sort | uniq
```

A historical, partial listing of contributors and their contributions to some of the earlier versions of NetworkX can be found here.

15.1.1 Original Authors

Aric Hagberg
Dan Schult
Pieter Swart

15.1.2 Contributors

Optionally, add your desired name and include a few relevant links. The order is partially historical, and now, mostly arbitrary.
• Aric Hagberg, GitHub: hagberg
• Dan Schult, GitHub: dschult
• Pieter Swart
• Katy Bold
• Hernan Rozenfeld
• Brendt Wohlberg
• Jim Bagrow
• Holly Johnsen
• Arnar Flatberg
• Chris Myers
• Joel Miller
• Keith Briggs
• Ignacio Rozada
• Phillipp Pagel
• Sverre Sundsdal
• Ross M. Richardson
• Eben Kenah
• Sasha Gutfriend
• Udi Weinsberg
• Matteo Dell’Amico
• Andrew Conway
• Raf Guns
• Salim Fadhley
• Matteo Dell’Amico
• Fabrice Desclaux
• Arpad Horvath
• Minh Van Nguyen
• Willem Ligtenberg
• Loïc Séguin-C.
• Paul McGuire
• Jesus Cerquides
• Ben Edwards
• Jon Olav Vik
• Hugh Brown
• Ben Reilly
• Leo Lopes
15.2 Support

networkx and those who have contributed to networkx have received support throughout the years from a variety of sources. We list them below. If you have provided support to networkx and a support acknowledgment does not appear below, please help us remedy the situation, and similarly, please let us know if you’d like something modified or corrected.

15.2.1 Research Groups

networkx acknowledges support from the following:

- Center for Nonlinear Studies, Los Alamos National Laboratory, PI: Aric Hagberg
- Open Source Programs Office, Google
- Complexity Sciences Center, Department of Physics, University of California-Davis, PI: James P. Crutchfield
- Center for Complexity and Collective Computation, Wisconsin Institute for Discovery, University of Wisconsin-Madison, PIs: Jessica C. Flack and David C. Krakauer
15.2.2 Funding

networkx acknowledges support from the following:

- Google Summer of Code via Python Software Foundation
- U.S. Army Research Office grant W911NF-12-1-0288
- DARPA Physical Intelligence Subcontract No. 9060-000709
- NSF Grant No. PHY-0748828
- John Templeton Foundation through a grant to the Santa Fe Institute to study complexity
- U.S. Army Research Laboratory and the U.S. Army Research Office under contract number W911NF-13-1-0340
dictionary  A Python dictionary maps keys to values. Also known as “hashes”, or “associative arrays”. See http://docs.python.org/tutorial/datastructures.html#dictionaries

ebunch  An iterable container of edge tuples like a list, iterator, or file.

edge  Edges are either two-tuples of nodes (u,v) or three tuples of nodes with an edge attribute dictionary (u,v,dict).

edge attribute  Edges can have arbitrary Python objects assigned as attributes by using keyword/value pairs when adding an edge assigning to the G.edge[u][v] attribute dictionary for the specified edge u-v.

hashable  An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__() method), and can be compared to other objects (it needs an __eq__() or __cmp__() method). Hashable objects which compare equal must have the same hash value.

   Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash value internally.

   All of Python's immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal, and their hash value is their id().

   Definition from http://docs.python.org/glossary.html

nbunch  An nbunch is any iterable container of nodes that is not itself a node in the graph. It can be an iterable or an iterator, e.g. a list, set, graph, file, etc..

node  A node can be any hashable Python object except None.

node attribute  Nodes can have arbitrary Python objects assigned as attributes by using keyword/value pairs when adding a node or assigning to the G.node[n] attribute dictionary for the specified node n.
networkx.algorithms.approximation
networkx.algorithms.approximation.clique
networkx.algorithms.approximation.clustering_coefficient
networkx.algorithms.approximation.connectivity
networkx.algorithms.approximation.dominating_set
networkx.algorithms.approximation.independent_set
networkx.algorithms.approximation.kcomponents
networkx.algorithms.approximation.matching
networkx.algorithms.approximation.ramsey
networkx.algorithms.approximation.vertex_cover
networkx.algorithms.assortativity
networkx.algorithms.bipartite
networkx.algorithms.bipartite.basic
networkx.algorithms.bipartite.cluster
networkx.algorithms.bipartite.generators
networkx.algorithms.bipartite.matching
networkx.algorithms.bipartite.matrix
networkx.algorithms.bipartite.projection
networkx.algorithms.bipartite.redundancy
networkx.algorithms.bipartite.spectral
networkx.algorithms.block
networkx.algorithms.boundary
networkx.algorithms.centrality
networkx.algorithms.chordal.chordal_alg
networkx.algorithms.clique
networkx.algorithms.cluster
networkx.algorithms.coloring
networkx.algorithms.community
networkx.algorithms.community.kclique
networkx.algorithms.components
networkx.algorithms.components.attracting
networkx.algorithms.components.biconnected
networkx.algorithms.components.connected
networkx.algorithms.components.semiconnected
networkx.algorithms.components.strongly_connected
networkx.algorithms.components.weakly_connected
networkx.algorithms.connectivity
networkx.algorithms.connectivity.connectivity
networkx.algorithms.connectivity.cuts
networkx.algorithms.connectivity.kcomponents
networkx.algorithms.connectivity.kcutsets
networkx.algorithms.connectivity.stoerwagner
networkx.algorithms.connectivity.utils
networkx.algorithms.core
networkx.algorithms.cycles
networkx.algorithms.dag
networkx.algorithms.distance_measures
networkx.algorithms.distance_regular
networkx.algorithms.dominance
U

networkx.utils, 495
networkx.utils.contextmanagers, 501
networkx.utils.decorators, 498
networkx.utils.misc, 495
networkx.utils.random_sequence, 496
networkx.utils.rcm, 499
networkx.utils.union_find, 496
## Symbols

<table>
<thead>
<tr>
<th>Method</th>
<th>Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>contains</strong>()</td>
<td>DiGraph method</td>
<td>58</td>
</tr>
<tr>
<td><strong>contains</strong>()</td>
<td>Graph method</td>
<td>28</td>
</tr>
<tr>
<td><strong>contains</strong>()</td>
<td>MultiDiGraph method</td>
<td>117</td>
</tr>
<tr>
<td><strong>contains</strong>()</td>
<td>MultiGraph method</td>
<td>87</td>
</tr>
<tr>
<td><strong>getitem</strong>()</td>
<td>DiGraph method</td>
<td>54</td>
</tr>
<tr>
<td><strong>getitem</strong>()</td>
<td>Graph method</td>
<td>26</td>
</tr>
<tr>
<td><strong>getitem</strong>()</td>
<td>MultiDiGraph method</td>
<td>114</td>
</tr>
<tr>
<td><strong>getitem</strong>()</td>
<td>MultiGraph method</td>
<td>85</td>
</tr>
<tr>
<td><strong>init</strong>()</td>
<td>DiGraph method</td>
<td>40</td>
</tr>
<tr>
<td><strong>init</strong>()</td>
<td>DiGraphMatcher method</td>
<td>290</td>
</tr>
<tr>
<td><strong>init</strong>()</td>
<td>Edmonds method</td>
<td>360</td>
</tr>
<tr>
<td><strong>init</strong>()</td>
<td>Graph method</td>
<td>13</td>
</tr>
<tr>
<td><strong>init</strong>()</td>
<td>GraphMatcher method</td>
<td>289</td>
</tr>
<tr>
<td><strong>init</strong>()</td>
<td>MultiDiGraph method</td>
<td>99</td>
</tr>
<tr>
<td><strong>init</strong>()</td>
<td>MultiGraph method</td>
<td>72</td>
</tr>
<tr>
<td><strong>iter</strong>()</td>
<td>DiGraph method</td>
<td>49</td>
</tr>
<tr>
<td><strong>iter</strong>()</td>
<td>MultiDiGraph method</td>
<td>109</td>
</tr>
<tr>
<td><strong>iter</strong>()</td>
<td>MultiGraph method</td>
<td>81</td>
</tr>
<tr>
<td><strong>len</strong>()</td>
<td>DiGraph method</td>
<td>59</td>
</tr>
<tr>
<td><strong>len</strong>()</td>
<td>Graph method</td>
<td>30</td>
</tr>
<tr>
<td><strong>len</strong>()</td>
<td>MultiDiGraph method</td>
<td>109</td>
</tr>
<tr>
<td><strong>len</strong>()</td>
<td>MultiGraph method</td>
<td>89</td>
</tr>
</tbody>
</table>

## A

- `add_cycle()` (DiGraph method), 47
- `add_cycle()` (MultiDiGraph method), 106
- `add_edge()` (DiGraph method), 16
- `add_edge()` (MultiDiGraph method), 79
- `add_edge()` (MultiGraph method), 43
- `add_edges_from()` (DiGraph method), 44
- `add_edges_from()` (Graph method), 17
- `add_edges_from()` (MultiDiGraph method), 103
- `add_edges_from()` (MultiGraph method), 74
- `add_nodes_from()` (DiGraph method), 72
- `add_nodes_from()` (Graph method), 41
- `add_nodes_from()` (MultiDiGraph method), 100
- `add_nodes_from()` (MultiGraph method), 73
- `add_path()` (DiGraph method), 47
- `add_path()` (Graph method), 20
- `add_path()` (MultiDiGraph method), 106
- `add_path()` (MultiGraph method), 78
- `add_star()` (DiGraph method), 46
- `add_star()` (Graph method), 19
- `add_star()` (MultiDiGraph method), 106
- `add_star()` (MultiGraph method), 78
- `add_weighted_edges_from()` (DiGraph method), 45
- `add_weighted_edges_from()` (Graph method), 18
- `add_weighted_edges_from()` (MultiDiGraph method), 103
- `add_weighted_edges_from()` (MultiGraph method), 76
- `adjacency_data()` (in module networkx.readwrite.json_graph), 462
- `adjacency_graph()` (in module networkx.readwrite.json_graph), 462
- `adjacency_iter()` (DiGraph method), 56
- `adjacency_iter()` (Graph method), 27
- `adjacency_iter()` (MultiDiGraph method), 116
- `adjacency_iter()` (MultiGraph method), 86
- `adjacency_list()` (DiGraph method), 55
- `adjacency_list()` (Graph method), 26
- `adjacency_list()` (MultiDiGraph method), 115
- `adjacency_list()` (MultiGraph method), 85
- `adjacency_matrix()` (in module networkx.linalg.graphmatrix), 413
- `adjacency_spectrum()` (in module networkx.linalg.spectrum), 417
- `algebraic_connectivity()` (in module networkx.linalg.algebraicconnectivity), 418
- `all_neighbors()` (in module networkx.classes.function), 365
- `all_node_cuts()` (in module networkx.algorithms.connectivity.kcutsets), 223
all_pairs_dijkstra_path() (in module networkx.algorithms.shortest_paths.weighted), 335
all_pairs_dijkstra_path_length() (in module networkx.algorithms.shortest_paths.weighted), 336
all_pairs_node_connectivity() (in module networkx.algorithms.approximation.connectivity), 129
all_pairs_node_connectivity() (in module networkx.algorithms.connectivity.connectivity), 225
all_pairs_shortest_path() (in module networkx.algorithms.shortest_paths.unweighted), 331
all_pairs_shortest_path_length() (in module networkx.algorithms.shortest_paths.unweighted), 331
all_shortest_paths() (in module networkx.algorithms.shortest_paths.generic), 327
all_simple_paths() (in module networkx.algorithms.simple_paths), 344
alternating_havel_hakimi_graph() (in module networkx.algorithms.bipartite.generators), 170
ancestors() (in module networkx.algorithms.dag), 246
antichains() (in module networkx.algorithms.dag), 249
approximate_current_flow_betweenness_centrality() (in module networkx.algorithms.centrality), 183
articulation_points() (in module networkx.algorithms.components.biconnected), 220
astar_path() (in module networkx.algorithms.shortest_paths.astar), 343
astar_path_length() (in module networkx.algorithms.shortest_paths.astar), 343
attr_matrix() (in module networkx.linalg.attrmatrix), 421
attr_sparse_matrix() (in module networkx.linalg.attrmatrix), 422
attracting_component_subgraphs() (in module networkx.algorithms.components.attracting), 216
attracting_components() (in module networkx.algorithms.components.attracting), 215
attribute_assortativity_coefficient() (in module networkx.algorithms.assortativity), 139
attribute_mixing_dict() (in module networkx.algorithms.assortativity), 146
attribute_mixing_matrix() (in module networkx.algorithms.assortativity), 145
authority_matrix() (in module networkx.algorithms.link_analysis.hits_alg), 303
average_clustering() (in module networkx.algorithms.assortativity.clustering_coefficient), 134
average_clustering() (in module networkx.algorithms.bipartite.cluster), 162
average_clustering() (in module networkx.algorithms.components.biconnected), 218
average_degree_connectivity() (in module networkx.algorithms.assortativity), 142
average_neighbor_degree() (in module networkx.algorithms.assortativity), 141
average_node_connectivity() (in module networkx.algorithms.connectivity.connectivity), 224
average_shortest_path_length() (in module networkx.algorithms.shortest_paths.generic), 329

B
balanced_tree() (in module networkx.generators.classic), 372
barabasi_albert_graph() (in module networkx.generators.random_graphs), 387
barbell_graph() (in module networkx.generators.classic), 372
bellman_ford() (in module networkx.algorithms.shortest_paths.weighted), 339
betweenness_centrality() (in module networkx.algorithms.assortativity), 178
betweenness_centrality() (in module networkx.algorithms.bipartite.centrality), 167
bfs_edges() (in module networkx.algorithms.traversal.breadth_first_search), 352
bfs_predecessors() (in module networkx.algorithms.traversal.breadth_first_search), 353
bfs_successors() (in module networkx.algorithms.traversal.breadth_first_search), 353
bfs_tree() (in module networkx.algorithms.traversal.breadth_first_search), 352
biadjacency_matrix() (in module networkx.algorithms.bipartite.matrix), 153
biconnected_component_edges() (in module networkx.algorithms.components.biconnected), 218
biconnected_component_subgraphs() (in module networkx.algorithms.components.biconnected), 219
biconnected_components() (in module networkx.algorithms.components.biconnected),
bidirectional_dijkstra() (in module networkx.algorithms.shortest_paths.weighted), 337
binomial_graph() (in module networkx.generators.random_graphs), 384
blockmodel() (in module networkx.algorithms.block), 173
branching_weight() (in module networkx.algorithms.tree.branchings), 358
build_auxiliary_edge_connectivity() (in module networkx.algorithms.connectivity.utils), 239
build_auxiliary_node_connectivity() (in module networkx.algorithms.connectivity.utils), 240
build_residual_network() (in module networkx.algorithms.flow), 269
bull_graph() (in module networkx.generators.small), 379
candidate_pairs_iter() (DiGraphMatcher method), 291
candidate_pairs_iter() (GraphMatcher method), 290
capacity_scaling() (in module networkx.algorithms.flow), 276
cartesian_product() (in module networkx.algorithms.operators.product), 321
categorical_edge_match() (in module networkx.algorithms.isomorphism), 292
categorical_multiedge_match() (in module networkx.algorithms.isomorphism), 293
categorical_node_match() (in module networkx.algorithms.isomorphism), 292
caveman_graph() (in module networkx.generators.community), 407
center() (in module networkx.algorithms.distance_measures), 250
chordal_cycle_graph() (in module networkx.generators.expanders), 377
chordal_graph_cliques() (in module networkx.algorithms.chordal.chordal_alg), 196
chordal_graph_treewidth() (in module networkx.algorithms.chordal.chordal_alg), 196
chvatal_graph() (in module networkx.generators.small), 379
circular_ladder_graph() (in module networkx.generators.classic), 374
circular_layout() (in module networkx.drawing.layout), 490
clear() (DiGraph method), 48
clear() (Graph method), 20
clear() (MultiDiGraph method), 107
clear() (MultiGraph method), 79
clique_removal() (in module networkx.algorithms.approximation.clique), 133
cliques_containing_node() (in module networkx.algorithms.clique), 200
closeness_centrality() (in module networkx.algorithms.bipartite.centrality), 166
closeness_centrality() (in module networkx.algorithms.centrality), 177
closeness_vitality() (in module networkx.algorithms.vitality), 361
clustering() (in module networkx.algorithms.bipartite.cluster), 160
clustering() (in module networkx.algorithms.cluster), 202
cn_soundarajan_hopcroft() (in module networkx.algorithms.link_prediction), 306
collaboration_weighted_projected_graph() (in module networkx.algorithms.projected_graph), 156
color() (in module networkx.algorithms.bipartite.project), 149
common_neighbors() (in module networkx.classes.function), 366
communicability() (in module networkx.algorithms.centrality), 188
communicability_betweenness_centrality() (in module networkx.algorithms.centrality), 191
communicability_centrality() (in module networkx.algorithms.centrality), 190
communicability_centrality_exp() (in module networkx.algorithms.centrality), 191
communicability_exp() (in module networkx.algorithms.centrality), 189
complement() (in module networkx.algorithms.operators.unary), 316
complete_bipartite_graph() (in module networkx.algorithms.bipartite.generators), 168
complete_graph() (in module networkx.algorithms.classic), 373
complete_multipartite_graph() (in module networkx.algorithms.classic), 373
compose() (in module networkx.algorithms.operators.unary), 317
compose_all() (in module networkx.algorithms.operators.all), 320
condensation() (in module networkx.algorithms.components.strongly_connected), 212
configuration_model() (in module networkx.algorithms.bipartite.generators), 169
configuration_model() (in module networkx.algorithms.community), 408
connected_component_subgraphs() (in module networkx.algorithms.components.connected), 208
connected_components() (in module networkx.algorithms.components.connected), 207
connected_double_edge_swap() (in module networkx.algorithms.swap), 347
connected_watts_strogatz_graph() (in module networkx.generators.random_graphs), 386
contracted_edge() (in module networkx.algorithms.minors), 310
contracted_nodes() (in module networkx.algorithms.minors), 311
copy() (DiGraph method), 65
copy() (Graph method), 34
copy() (MultiDiGraph method), 126
copy() (MultiGraph method), 93
core_number() (in module networkx.algorithms.core), 240
cost_of_flow() (in module networkx.algorithms.flow), 274
could_be_isomorphic() (in module networkx.algorithms.isomorphism), 286
create_degree_sequence() (in module networkx.utils.random_sequence), 496
creates_empty_copy() (in module networkx.classes.function), 364
cubical_graph() (in module networkx.generators.small), 379
cumulative_distribution() (in module networkx.generators.small), 379
current_flow_betweenness_centrality() (in module networkx.algorithms.centrality), 181
current_flow_closeness_centrality() (in module networkx.algorithms.centrality), 180
cuthill_mckee_ordering() (in module networkx.utils.rcm), 499
cycle_basis() (in module networkx.algorithms.cycles), 243
cycle_graph() (in module networkx.generators.classic), 374
dag_longest_path() (in module networkx.algorithms.dag), 249
dag_longest_path_length() (in module networkx.algorithms.dag), 250
davis_southern_women_graph() (in module networkx.generators.social), 406
default_opener() (in module networkx.utils.misc), 496
degree() (DiGraph method), 59
degree() (Graph method), 30
degree() (in module networkx.classes.function), 363
degree() (MultiDiGraph method), 119
degree() (MultiGraph method), 89
degree_assortativity_coefficient() (in module networkx.algorithms.assortativity), 138
degree_centrality() (in module networkx.algorithms.bipartite.centrality), 166
degree_centrality() (in module networkx.algorithms.centrality), 176
degree_histogram() (in module networkx.classes.function), 363
degree_iter() (DiGraph method), 60
degree_iter() (Graph method), 31
degree_iter() (MultiDiGraph method), 120
degree_iter() (MultiGraph method), 90
degree_mixing_dict() (in module networkx.algorithms.assortativity), 145
degree_mixing_matrix() (in module networkx.algorithms.assortativity), 145
degree_pearson_correlation_coefficient() (in module networkx.algorithms.assortativity), 140
degree_sequence_tree() (in module networkx.generators.degree_seq), 394
degrees() (in module networkx.algorithms.bipartite.basic), 150
dense_gnm_random_graph() (in module networkx.generators.random_graphs), 383
density() (in module networkx.algorithms.bipartite.basic), 150
density() (in module networkx.classes.function), 363
desargues_graph() (in module networkx.generators.classic), 379
descendants() (in module networkx.algorithms.dag), 246
dfs_edges() (in module networkx.algorithms.traversal.depth_first_search), 348
dfs_labeled_edges() (in module networkx.algorithms.traversal.depth_first_search), 351
dfs_postorder_nodes() (in module networkx.algorithms.traversal.depth_first_search), 350
dfs_predecessors() (in module networkx.algorithms.traversal.depth_first_search), 349
dfs preorder_nodes() (in module networkx.algorithms.traversal.depth_first_search), 350
dfs_successors() (in module networkx.algorithms.traversal.depth_first_search), 349
dfs_tree() (in module networkx.algorithms.traversal.depth_first_search), 348

diameter() (in module networkx.algorithms.distance_measures), 250
diamond_graph() (in module networkx.generators.small), 379
dictionary, 511
difference() (in module networkx.algorithms.operators.binary), 319
DiGraph() (in module networkx), 36
dijkstra_path() (in module networkx.algorithms.shortest_paths.weighted), 333
dijkstra_path_length() (in module networkx.algorithms.shortest_paths.weighted), 333
dijkstra_predecessor_and_distance() (in module networkx.algorithms.shortest_paths.weighted), 338
directed_configuration_model() (in module networkx.generators.degree_seq), 391
directed_havel_hakimi_graph() (in module networkx.generators.degree_seq), 394
directed_laplacian_matrix() (in module networkx.linalg.laplacianmatrix), 416
discrete_sequence() (in module networkx.utils.random_sequence), 497
disjoint_union() (in module networkx.algorithms.operators.binary), 318
disjoint_union_all() (in module networkx.algorithms.operators.all), 321
dispersion() (in module networkx.algorithms.centrality), 194
dodecahedral_graph() (in module networkx.generators.small), 379
dominance_frontiers() (in module networkx.algorithms.dominance), 254
dominating_set() (in module networkx.algorithms.dominating), 255
dorogovtsev_goltsev_mendes_graph() (in module networkx.generators.classic), 374
double_edge_swap() (in module networkx.algorithms.swap), 346
draw() (in module networkx.drawing.nx_pylab), 477
draw_circular() (in module networkx.drawing.nx_pylab), 483
draw_graphviz() (in module networkx.drawing.nx_pylab), 484
draw_network() (in module networkx.drawing.nx_pylab), 484
draw_networkx_edge_labels() (in module networkx.drawing.nx_pylab), 483
draw_networkx_edges() (in module networkx.drawing.nx_pylab), 481
draw_networkx_labels() (in module networkx.drawing.nx_pylab), 482
draw_networkx_nodes() (in module networkx.drawing.nx_pylab), 480
draw_random() (in module networkx.drawing.nx_pylab), 484
draw_shell() (in module networkx.drawing.nx_pylab), 484
draw_spectral() (in module networkx.drawing.nx_pylab), 484
draw_spring() (in module networkx.drawing.nx_pylab), 484
duplication_divergence_graph() (in module networkx.generators.random_graphs), 388

ebunch, 511
eccentricity() (in module networkx.algorithms.distance_measures), 251
data, 511
debug attribute, 511
deg_betweenness_centrality() (in module networkx.algorithms.centrality), 179
debug_bound() (in module networkx.algorithms.distance_measures), 217
deg_connectivity() (in module networkx.algorithms.distance_measures), 226
deg_betweenness_centrality() (in module networkx.algorithms.centrality), 182
deg_dfs() (in module networkx.algorithms.traversal.edge_dfs), 354
deg_load() (in module networkx.algorithms.centrality), 194
deg() (DiGraph method), 50
deg() (Graph method), 22
deg() (in module networkx.classes.function), 366
deg() (MultiDiGraph method), 109
deg() (MultiGraph method), 81
deg_iter() (DiGraph method), 50
deg_iter() (Graph method), 23
deg_iter() (in module networkx.classes.function), 366
deg_iter() (MultiDiGraph method), 110
deg_iter() (MultiGraph method), 82
Edmonds (class in networkx.algorithms.tree.branchings), 360
edmonds_karp() (in module networkx.algorithms.flow), 264
ego_graph() (in module networkx.generators.ego), 404
eigenvector_centrality() (in module networkx.algorithms.centrality), 184
eigenvector_centrality_numpy() (in module networkx.algorithms.centrality), 184
empty_graph() (in module networkx.generators.classic), 374
enumerate_all_cliques() (in module networkx.algorithms.clique), 198
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Module/Class/Generator</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>eppstein_matching()</td>
<td>networkx.algorithms.bipartite.matching</td>
<td>151</td>
</tr>
<tr>
<td>erdos_renyi_graph()</td>
<td>networkx.generators.random_graphs</td>
<td>384</td>
</tr>
<tr>
<td>estrada_index()</td>
<td>networkx.algorithms.centrality</td>
<td>192</td>
</tr>
<tr>
<td>eulerian_circuit()</td>
<td>networkx.algorithms.euler</td>
<td>256</td>
</tr>
<tr>
<td>expected_degree_graph()</td>
<td>networkx.generators.degree_seq</td>
<td>392</td>
</tr>
<tr>
<td>fast_could_be_isomorphic()</td>
<td>networkx.algorithms.isomorphism</td>
<td>286</td>
</tr>
<tr>
<td>fast_gnp_random_graph()</td>
<td>networkx.generators.random_graphs</td>
<td>382</td>
</tr>
<tr>
<td>faster_could_be_isomorphic()</td>
<td>networkx.algorithms.isomorphism</td>
<td>286</td>
</tr>
<tr>
<td>fiedler_vector()</td>
<td>networkx.linalg.algebraicconnectivity</td>
<td>419</td>
</tr>
<tr>
<td>find_cliques()</td>
<td>networkx.algorithms.clique</td>
<td>198</td>
</tr>
<tr>
<td>find_cycle()</td>
<td>networkx.algorithms.cycles</td>
<td>245</td>
</tr>
<tr>
<td>find_induced_nodes()</td>
<td>networkx.algorithms.chordal.chordal_alg</td>
<td>197</td>
</tr>
<tr>
<td>flattent()</td>
<td>networkx.utils.adjlist</td>
<td>440</td>
</tr>
<tr>
<td>florentine_families_graph()</td>
<td>networkx.generators.social</td>
<td>407</td>
</tr>
<tr>
<td>flow_hierarchy()</td>
<td>networkx.algorithms.hierarchy</td>
<td>281</td>
</tr>
<tr>
<td>floyd_warshall()</td>
<td>networkx.algorithms.shortest_paths.dense</td>
<td>341</td>
</tr>
<tr>
<td>floyd_warshall_numpy()</td>
<td>networkx.algorithms.shortest_paths.dense</td>
<td>342</td>
</tr>
<tr>
<td>floyd_warshall_predecessor_and_distance()</td>
<td>networkx.algorithms.shortest_paths.dense</td>
<td>341</td>
</tr>
<tr>
<td>freeze()</td>
<td>networkx.classes.function</td>
<td>369</td>
</tr>
<tr>
<td>from_agraph()</td>
<td>networkx.drawing.nx_agraph</td>
<td>485</td>
</tr>
<tr>
<td>from_biadjacency_matrix()</td>
<td>networkx.algorithms.bipartite.matching</td>
<td>154</td>
</tr>
<tr>
<td>from_dict_of_dicts()</td>
<td>networkx.convert</td>
<td>426</td>
</tr>
<tr>
<td>from_dict_of_lists()</td>
<td>networkx.convert</td>
<td>427</td>
</tr>
<tr>
<td>from_edgelist()</td>
<td>networkx.convert</td>
<td>428</td>
</tr>
<tr>
<td>from_numpy_matrix()</td>
<td>networkx.convert_matrix</td>
<td>431</td>
</tr>
<tr>
<td>from_pandas_dataframe()</td>
<td>networkx.convert_matrix</td>
<td>436</td>
</tr>
<tr>
<td>from_pydot()</td>
<td>networkx.drawing.nx_pydot</td>
<td>488</td>
</tr>
<tr>
<td>from_scipy_sparse_matrix()</td>
<td>networkx.convert_matrix</td>
<td>433</td>
</tr>
<tr>
<td>frucht_graph()</td>
<td>networkx.generators.small</td>
<td>379</td>
</tr>
<tr>
<td>gaussian_random_partition_graph()</td>
<td>networkx.generators.community</td>
<td>410</td>
</tr>
<tr>
<td>general_random_intersection_graph()</td>
<td>networkx.generators.intersection</td>
<td>405</td>
</tr>
<tr>
<td>generate_adjlist()</td>
<td>networkx.readwrite.adjlist</td>
<td>440</td>
</tr>
<tr>
<td>generate_edgelist()</td>
<td>networkx.readwrite.edgelist</td>
<td>448</td>
</tr>
<tr>
<td>generate_gml()</td>
<td>networkx.readwrite.gml</td>
<td>454</td>
</tr>
<tr>
<td>generate_graph6()</td>
<td>networkx.readwrite.graph6</td>
<td>472</td>
</tr>
<tr>
<td>generate_multiline_adjlist()</td>
<td>networkx.readwrite.multiline_adjlist</td>
<td>443</td>
</tr>
<tr>
<td>generate_sparse6()</td>
<td>networkx.readwrite.sparse6</td>
<td>472</td>
</tr>
<tr>
<td>generate_unique_node()</td>
<td>networkx.utils.misc</td>
<td>496</td>
</tr>
<tr>
<td>generic_edge_match()</td>
<td>networkx.algorithms.isomorphism</td>
<td>295</td>
</tr>
<tr>
<td>generic_multiedge_match()</td>
<td>networkx.algorithms.isomorphism</td>
<td>296</td>
</tr>
<tr>
<td>generic_node_match()</td>
<td>networkx.algorithms.isomorphism</td>
<td>295</td>
</tr>
<tr>
<td>geographical_threshold_graph()</td>
<td>networkx.algorithms.bipartite.projection</td>
<td>158</td>
</tr>
<tr>
<td>get_edge_attributes()</td>
<td>networkx.classes.function</td>
<td>368</td>
</tr>
<tr>
<td>get_edge_data()</td>
<td>DiGraph method</td>
<td>53</td>
</tr>
<tr>
<td>get_edge_data()</td>
<td>Graph method</td>
<td>24</td>
</tr>
<tr>
<td>get_edge_data()</td>
<td>MultiDiGraph method</td>
<td>113</td>
</tr>
<tr>
<td>get_edge_data()</td>
<td>MultiGraph method</td>
<td>83</td>
</tr>
<tr>
<td>get_node_attributes()</td>
<td>networkx.classes.function</td>
<td>367</td>
</tr>
<tr>
<td>global_parameters()</td>
<td>networkx.algorithms.distance_regular</td>
<td>253</td>
</tr>
<tr>
<td>gn_graph()</td>
<td>networkx.generators.directed</td>
<td>397</td>
</tr>
<tr>
<td>gnc_graph()</td>
<td>networkx.generators.directed</td>
<td>398</td>
</tr>
<tr>
<td>gnm_random_graph()</td>
<td>networkx.generators.random_graphs</td>
<td>383</td>
</tr>
<tr>
<td>gnmk_random_graph()</td>
<td>networkx.algorithms.bipartite.generators</td>
<td>172</td>
</tr>
<tr>
<td>gnp_random_graph()</td>
<td>networkx.generators.random_graphs</td>
<td>382</td>
</tr>
</tbody>
</table>
gnr_graph() (in module networkx.generators.directed), 397

google_matrix() (in module networkx.algorithms.link_analysis.pagerank_alg), 300

Graph() (in module networkx), 9
graph_atlas_g() (in module networkx.generators.atlas), 371
graph_clique_number() (in module networkx.algorithms.clique), 200
graph_number_of_cliques() (in module networkx.algorithms.clique), 200
graphviz_layout() (in module networkx.drawing.nx_agraph), 486
graphviz_layout() (in module networkx.drawing.nx_pydot), 489
greedy_branching() (in module networkx.algorithms.tree.branchings), 358
greedy_color() (in module networkx.algorithms.coloring), 204

grid_2d_graph() (in module networkx.generators.classic), 375
grid_graph() (in module networkx.generators.classic), 375

H

has_edge() (DiGraph method), 58
has_edge() (Graph method), 28
has_edge() (MultiDiGraph method), 118
has_edge() (MultiGraph method), 88
has_node() (DiGraph method), 57
has_node() (Graph method), 28
has_node() (MultiDiGraph method), 117
has_node() (MultiGraph method), 87
has_path() (in module networkx.algorithms.shortest_paths.generic), 329

hashable, 511

havel_hakimi_graph() (in module networkx.algorithms.bipartite.generators), 169
havel_hakimi_graph() (in module networkx.generators.degree_seq), 393
heawood_graph() (in module networkx.generators.small), 380

hits() (in module networkx.algorithms.link_analysis.hits_alg), 301

hopcroft_karp_matching() (in module networkx.algorithms.bipartite.matching), 152

house_graph() (in module networkx.generators.small), 380
house_x_graph() (in module networkx.generators.small), 380

hub_matrix() (in module networkx.algorithms.link_analysis.hits_alg), 303

hypercube_graph() (in module networkx.generators.classic), 375

icosahedral_graph() (in module networkx.generators.small), 380

identified_nodes() (in module networkx.algorithms.minors), 312

immediate_dominators() (in module networkx.algorithms.dominance), 254

in_degree() (DiGraph method), 60
in_degree() (MultiDiGraph method), 120
in_degree() (MultiDiGraph method), 120
in_degree() (MultiDiGraph method), 113

incidence_matrix() (in module networkx.linalg.graphmatrix), 414

info() (in module networkx.classes.function), 364
initialize() (DiGraphMatcher method), 291
initialize() (GraphMatcher method), 289

intersection() (in module networkx.algorithms.operators.binary), 318
intersection_all() (in module networkx.algorithms.operators.all), 321

intersection_array() (in module networkx.algorithms.distance_regular), 252

is_aperiodic() (in module networkx.algorithms.dag), 248
is_arborescence() (in module networkx.algorithms.tree.recognition), 357

is_attracting_component() (in module networkx.algorithms.components.attracting), 215

is_biconnected() (in module networkx.algorithms.components.biconnected), 216
is_bipartite() (in module networkx.algorithms.bipartite.basic), 148

is_bipartite_node_set() (in module networkx.algorithms.bipartite.basic), 148

Index 523
is_branching() (in module networkx.algorithms.tree.recognition), 358
is_chordal() (in module networkx.algorithms.chordal.chordal_alg), 195
is_connected() (in module networkx.algorithms.components.connected), 206
is_digraphical() (in module networkx.algorithms.graphical), 279
is_directed() (in module networkx.classes.function), 364
is_directed_acyclic_graph() (in module networkx.algorithms.dag), 248
is_distance_regular() (in module networkx.algorithms.distance_regular), 252
is_dominating_set() (in module networkx.algorithms.dominating), 255
is_eulerian() (in module networkx.algorithms.euler), 256
is_forest() (in module networkx.algorithms.tree.recognition), 357
is_frozen() (in module networkx.classes.function), 369
is_graphical() (in module networkx.algorithms.graphical), 278
is_isolate() (in module networkx.algorithms.graphical), 283
is_isomorphic() (DiGraphMatcher method), 291
is_isomorphic() (GraphMatcher method), 289
is_isomorphic() (in module networkx.algorithms.isomorphism), 284
is_kl_connected() (in module networkx.algorithms.hybrid), 283
is_list_of_ints() (in module networkx.utils.misc), 495
is_multigraphical() (in module networkx.algorithms.graphical), 279
is_pseudographical() (in module networkx.algorithms.graphical), 279
is_semiconnected() (in module networkx.algorithms.components.semiconnected), 221
is_string_like() (in module networkx.utils.misc), 495
is_strongly_connected() (in module networkx.algorithms.components.strongly_connected), 209
is_tree() (in module networkx.algorithms.tree.recognition), 356
is_valid_degree_sequence_erdos_gallai() (in module networkx.algorithms.graphical), 280
is_valid_degree_sequence_havel_hakimi() (in module networkx.algorithms.graphical), 280
is_weakly_connected() (in module networkx.algorithms.components.strongly_connected), 213
isolates() (in module networkx.algorithms.graphical), 284
isomorphisms_iter() (DiGraphMatcher method), 291
isomorphisms_iter() (GraphMatcher method), 289
iterable() (in module networkx.utils.misc), 495

J
jaccard_coefficient() (in module networkx.algorithms.link_prediction), 304
johnson() (in module networkx.algorithms.shortest_paths.weighted), 340

K
k_clique_communities() (in module networkx.algorithms.community.kclique), 205
k_components() (in module networkx.algorithms.approximation.kcomponents), 132
k_components() (in module networkx.algorithms.connectivity.kcomponents), 222
k_core() (in module networkx.algorithms.core), 241
k_corona() (in module networkx.algorithms.core), 243
k_crust() (in module networkx.algorithms.core), 242
k_nearest_neighbors() (in module networkx.algorithms.assortativity), 143
k_random_intersection_graph() (in module networkx.generators.intersection), 405
k_shell() (in module networkx.algorithms.core), 241
katz_centrality() (in module networkx.algorithms.centrality), 185
katz_centrality_numpy() (in module networkx.algorithms.centrality), 187
kl_connected_subgraph() (in module networkx.algorithms.hybrid), 282
kosaraju_strongly_connected_components() (in module networkx.algorithms.components.strongly_connected), 211
krackhardt_kite_graph() (in module networkx.generators.small), 380

L
ladder_graph() (in module networkx.generators.classic), 375
laplacian_matrix() (in module networkx.linalg.laplacianmatrix), 415
laplacian_spectrum() (in module networkx.linalg.spectrum), 417
latapy_clustering() (in module networkx.algorithms.bipartite.cluster), 163
LCF_graph() (in module networkx.generators.intersection), 405
lexicographic_product() (in module networkx.algorithms.operators.product), 322
line_graph() (in module networkx.generators.line), 402
literal_destringizer() (in module networkx.readwrite.gml), 455
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Module/Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>literal_stringizer()</td>
<td><code>networkx.readwrite.gml</code></td>
</tr>
<tr>
<td>load_centrality()</td>
<td><code>networkx.algorithms.centrality</code></td>
</tr>
<tr>
<td>local_edge_connectivity()</td>
<td><code>networkx.algorithms.connectivity</code></td>
</tr>
<tr>
<td>local_node_connectivity()</td>
<td><code>networkx.algorithms.approximation</code></td>
</tr>
<tr>
<td>lollipop_graph()</td>
<td><code>networkx.generators.classic</code></td>
</tr>
<tr>
<td>make_clique_bipartite()</td>
<td><code>networkx.algorithms.clique</code></td>
</tr>
<tr>
<td>make_max_clique_graph()</td>
<td><code>networkx.algorithms.clique</code></td>
</tr>
<tr>
<td>make_small_graph()</td>
<td><code>networkx.generators.small</code></td>
</tr>
<tr>
<td>make_str()</td>
<td><code>networkx.utils.misc</code></td>
</tr>
<tr>
<td>margulis_gabber_gall_graph()</td>
<td><code>networkx.generators.expanders</code></td>
</tr>
<tr>
<td>match()</td>
<td><code>DiGraphMatcher</code></td>
</tr>
<tr>
<td>match()</td>
<td><code>GraphMatcher</code></td>
</tr>
<tr>
<td>max_clique()</td>
<td><code>networkx.algorithms.approximation.clique</code></td>
</tr>
<tr>
<td>max_flow_min_cost()</td>
<td><code>networkx.algorithms.approximation.clique</code></td>
</tr>
<tr>
<td>max_weight_matching()</td>
<td><code>networkx.algorithms.matching</code></td>
</tr>
<tr>
<td>maximal_independent_set()</td>
<td><code>networkx.algorithms.mis</code></td>
</tr>
<tr>
<td>maximal_matching()</td>
<td><code>networkx.algorithms.matching</code></td>
</tr>
<tr>
<td>maximum_branching()</td>
<td><code>networkx.algorithms.tree.branchings</code></td>
</tr>
<tr>
<td>maximum_flow()</td>
<td><code>networkx.algorithms.tree.branchings</code></td>
</tr>
<tr>
<td>maximum_flow_value()</td>
<td><code>networkx.algorithms.tree.branchings</code></td>
</tr>
<tr>
<td>maximum_independent_set()</td>
<td><code>networkx.algorithms.approximation.independent_set</code></td>
</tr>
<tr>
<td>maximum_spanning_arborescence()</td>
<td><code>networkx.algorithms.tree.branchings</code></td>
</tr>
<tr>
<td>moebius_kantor_graph()</td>
<td><code>networkx.generators.small</code></td>
</tr>
<tr>
<td>MultiDiGraph()</td>
<td><code>networkx</code></td>
</tr>
</tbody>
</table>

**N**

<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Module/Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>navigable_small_world_graph()</td>
<td><code>networkx.generators.geometric</code></td>
</tr>
<tr>
<td>nbunch</td>
<td><code>networkx.generators.small</code></td>
</tr>
<tr>
<td>nbunch_iter()</td>
<td><code>networkx.generators.geometric</code></td>
</tr>
<tr>
<td>nbunch_iter()</td>
<td><code>networkx.generators.geometric</code></td>
</tr>
<tr>
<td>nbunch_iter()</td>
<td><code>networkx.generators.geometric</code></td>
</tr>
<tr>
<td>neighbors()</td>
<td><code>networkx</code></td>
</tr>
</tbody>
</table>

**Index**

525
neighbors_iter() (MultiDiGraph method), 114
neighbors_iter() (MultiGraph method), 84
network_simplex() (in module networkx.algorithms.flow), 270
networkx.algorithms.approximation (module), 129
networkx.algorithms.approximation.clique (module), 133
networkx.algorithms.approximation.clustering_coefficient (module), 134
networkx.algorithms.approximation.connectivity (module), 129
networkx.algorithms.approximation.dominating_set (module), 134
networkx.algorithms.approximation.independent_set (module), 135
networkx.algorithms.approximation.kcomponents (module), 131
networkx.algorithms.approximation.matching (module), 136
networkx.algorithms.approximation.ramsey (module), 137
networkx.algorithms.approximation.vertex_cover (module), 137
networkx.algorithms.assortativity (module), 138
networkx.algorithms.bipartite (module), 146
networkx.algorithms.bipartite.basic (module), 148
networkx.algorithms.bipartite.centrality (module), 165
networkx.algorithms.bipartite.cluster (module), 160
networkx.algorithms.bipartite.generators (module), 168
networkx.algorithms.bipartite.matching (module), 151
networkx.algorithms.bipartite.matrix (module), 153
networkx.algorithms.bipartite.projection (module), 154
networkx.algorithms.bipartite.redundancy (module), 164
networkx.algorithms.bipartite.spectral (module), 159
networkx.algorithms.block (module), 173
networkx.algorithms.boundary (module), 173
networkx.algorithms.centrality (module), 175
networkx.algorithms.chordal.chordal_alg (module), 195
networkx.algorithms.clique (module), 197
networkx.algorithms.cluster (module), 200
networkx.algorithms.coloring (module), 204
networkx.algorithms.community (module), 205
networkx.algorithms.community.kclique (module), 205
networkx.algorithms.components (module), 206
networkx.algorithms.components.attracting (module), 215
networkx.algorithms.components.biconnected (module), 216
networkx.algorithms.components.connected (module), 206
networkx.algorithms.components.semicomponent (module), 221
networkx.algorithms.components.strongly_connected (module), 209
networkx.algorithms.components.weakly_connected (module), 213
networkx.algorithms.connectivity (module), 222
networkx.algorithms.connectivity.connectivity (module), 224
networkx.algorithms.connectivity.cuts (module), 232
networkx.algorithms.connectivity.kcomponents (module), 222
networkx.algorithms.connectivity.kcutsets (module), 223
networkx.algorithms.connectivity.stoerwagner (module), 238
networkx.algorithms.connectivity.utils (module), 239
networkx.algorithms.core (module), 240
networkx.algorithms.cycles (module), 243
networkx.algorithms.dag (module), 246
networkx.algorithms.distance_measures (module), 250
networkx.algorithms.distance_regular (module), 252
networkx.algorithms.domination (module), 254
networkx.algorithms.dominating (module), 255
networkx.algorithms.euler (module), 256
networkx.algorithms.flow (module), 257
networkx.algorithms.graphical (module), 278
networkx.algorithms.hierarchy (module), 281
networkx.algorithms.hybrid (module), 282
networkx.algorithms.isolate (module), 283
networkx.algorithms.isomorphism (module), 284
networkx.algorithms.isomorphism.isomorphvf2 (module), 287
networkx.algorithms.link_analysis.hits_alg (module), 300
networkx.algorithms.link_analysis.pagerank_alg (module), 296
networkx.algorithms.link_prediction (module), 303
networkx.algorithms.matching (module), 309
networkx.algorithms.minors (module), 310
networkx.algorithms.mis (module), 314
networkx.algorithms.mst (module), 314
networkx.algorithms.operators.all (module), 319
networkx.algorithms.operators.binary (module), 317
networkx.algorithms.operators.product (module), 321
networkx.algorithms.operators.unary (module), 316
networkx.algorithms.richclub (module), 325
networkx.algorithms.shortest_paths.astar (module), 342
networkx.algorithms.shortest_paths.dense (module), 341
networkx.algorithms.shortest_paths.generic (module), 326
networkx.algorithms.shortest_paths.unweighted (module), 329
networkx.algorithms.shortest_paths.weighted (module), 332
networkx.algorithms.simple_paths (module), 344
networkx.algorithms.swap (module), 346
networkx.algorithms.traversal.breadth_first_search (module), 352
normalized_laplacian_matrix() (in module networkx.linalg.laplacianmatrix), 415
null_graph() (in module networkx.generators.classic), 376
number_attracting_components() (in module networkx.algorithms.components.attracting), 215
number_connected_components() (in module networkx.algorithms.components.connected), 207
number_of_cliques() (in module networkx.algorithms.clique), 200
number_of_edges() (DiGraph method), 63
number_of_edges() (Graph method), 32
number_of_edges() (in module networkx.classes.function), 366
number_of_edges() (MultiDiGraph method), 123
number_of_edges() (MultiGraph method), 91
number_of_nodes() (DiGraph method), 59
number_of_nodes() (Graph method), 29
number_of_nodes() (in module networkx.classes.function), 365
number_of_nodes() (MultiDiGraph method), 119
number_of_nodes() (MultiGraph method), 88
number_of_nonisomorphic_trees() (in module networkx.generators.nonisomorphic_trees), 411
number_of_selfloops() (DiGraph method), 65
number_of_selfloops() (Graph method), 33
number_of_selfloops() (MultiDiGraph method), 125
number_of_selfloops() (MultiGraph method), 93
number_strongly_connected_components() (in module networkx.algorithms.components.strongly_connected), 209
number_weakly_connected_components() (in module networkx.algorithms.components.weakly_connected), 213
numeric_assortativity_coefficient() (in module networkx.algorithms.assortativity), 140
numerical_edge_match() (in module networkx.algorithms.isomorphism), 294
numerical_multiedge_match() (in module networkx.algorithms.isomorphism), 294
numerical_node_match() (in module networkx.algorithms.isomorphism), 293

O
octahedral_graph() (in module networkx.generators.small), 380
open_file() (in module networkx.utils.decorators), 498
order() (DiGraph method), 58
order() (Graph method), 29
order() (MultiDiGraph method), 118

P
pagerank() (in module networkx.algorithms.link_analysis.pagerank_alg), 297
pagerank_numpy() (in module networkx.algorithms.link_analysis.pagerank_alg), 298
pagerank_scipy() (in module networkx.algorithms.link_analysis.pagerank_alg), 299
pappus_graph() (in module networkx.generators.small), 380
pareto_sequence() (in module networkx.utils.random_sequence), 497
parse_adjlist() (in module networkx.readwrite.adjlist), 439
parse_edgelist() (in module networkx.readwrite.edgelist), 449
parse_gml() (in module networkx.readwrite.gml), 454
parse_graph6() (in module networkx.readwrite.graph6), 468
parse_leda() (in module networkx.readwrite.leda), 465
parse_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 443
parse_pajek() (in module networkx.readwrite.pajek), 474
parse_sparse6() (in module networkx.readwrite.sparse6), 471
path_graph() (in module networkx.generators.classic), 376
periphery() (in module networkx.algorithms.distance_measures), 251
petersen_graph() (in module networkx.generators.small), 380
planted_partition_graph() (in module networkx.generators.community), 409
power() (in module networkx.algorithms.operators.product), 324
powerlaw_cluster_graph() (in module networkx.generators.random_graphs), 387
powerlaw_sequence() (in module networkx.utils.random_sequence), 497
predecessor() (in module networkx.algorithms.shortest_paths.unweighted), 332
predecessors() (DiGraph method), 55
predecessors() (MultiDiGraph method), 115
predecessors_iter() (DiGraph method), 55
predecessors_iter() (MultiDiGraph method), 115
preferential_attachment() (in module networkx.algorithms.link_prediction), 305
preferential_attachment_graph() (in module networkx.algorithms.bipartite.generators), 171
preflow_push() (in module networkx.algorithms.flow), 267
projected_graph() (in module networkx.algorithms.bipartite.projection), 154
pydot_layout() (in module networkx.drawing.nx_pydot), 489
pygraphviz_layout() (in module networkx.drawing.nx_agraph), 487
quotient_graph() (in module networkx.algorithms.minors), 312
ra_index_soundarajan_hopcroft() (in module networkx.algorithms.link_prediction), 307
radius() (in module networkx.algorithms.distance_measures), 251
ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 137
random_clustered_graph() (in module networkx.generators.random_clustered), 395
random_degree_sequence_graph() (in module networkx.generators.degree_seq), 394
random_geometric_graph() (in module networkx.generators.geometric), 399
random_graph() (in module networkx.algorithms.bipartite.generators), 171
random_layout() (in module networkx.drawing.layout), 490
random_lobster() (in module networkx.generators.random_graphs), 388
random_partition_graph() (in module networkx.generators.community), 409
random_powerlaw_tree() (in module networkx.generators.random_graphs), 389
random_powerlaw_tree_sequence() (in module networkx.generators.random_graphs), 389
random_regular_graph() (in module networkx.generators.random_graphs), 386
random_shell_graph() (in module networkx.generators.random_graphs), 388
random_weighted_sample() (in module networkx.utils.random_sequence), 498
read_adjlist() (in module networkx.readwrite.adjlist), 437
read_dot() (in module networkx.drawing.nx_agraph), 486
read_dot() (in module networkx.drawing.nx_pydot), 488
read_edge() (in module networkx.readwrite.edge), 445
read_gexf() (in module networkx.readwrite.gexf), 450
read_gml() (in module networkx.readwrite.gml), 452
read_graph6() (in module networkx.readwrite.graph6), 471
read_graphml() (in module networkx.readwrite.graphml), 459
read_leda() (in module networkx.readwrite.leda), 465
read_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 441
read_pajek() (in module networkx.readwrite.pajek), 474
read_shp() (in module networkx.readwrite.nx_shp), 475
read_sparse6() (in module networkx.readwrite.sparse6), 471
read_weighted_edgelist() (in module networkx.readwrite.edgelist), 447
relabeled_gexf_graph() (in module networkx.readwrite.gexf), 452
relaxed_caveman_graph() (in module networkx.generators.community), 408
remove_edge() (DiGraph method), 45
remove_edge() (Graph method), 18
remove_edge() (MultiDiGraph method), 104
remove_edge() (MultiGraph method), 77
remove_edges_from() (DiGraph method), 46
remove_edges_from() (Graph method), 19
remove_edges_from() (MultiDiGraph method), 105
remove_edges_from() (MultiGraph method), 77
remove_node() (DiGraph method), 42
remove_node() (Graph method), 15
remove_node() (MultiDiGraph method), 101
remove_node() (MultiGraph method), 73
remove_nodes_from() (DiGraph method), 43
remove_nodes_from() (Graph method), 16
remove_nodes_from() (MultiDiGraph method), 101
remove_nodes_from() (MultiGraph method), 74
resource_allocation_index() (in module networkx.algorithms.link_prediction), 303
reverse() (DiGraph method), 68
reverse() (in module networkx.algorithms.operators.unary), 316
reverse() (MultiDiGraph method), 128

Index 529
syntacticfeasibility() (GraphMatcher method), 290

tensor_product() (in module networkx.algorithms.operators.product), 323
tetrahedral_graph() (in module networkx.generators.small), 381
to_agraph() (in module networkx.drawing.nx_agraph), 486
to_dict_of_dicts() (in module networkx.convert), 426
to_dict_of_lists() (in module networkx.convert), 427
to_directed() (DiGraph method), 66
to_directed() (Graph method), 35
to_directed() (MultiDiGraph method), 127
to_directed() (MultiGraph method), 94
to_edgelist() (in module networkx.convert), 427
to_networkx_graph() (in module networkx.convert), 425
to_numpy_matrix() (in module networkx.convert_matrix), 428
to_numpy_recarray() (in module networkx.convert_matrix), 430
to_pandas_dataframe() (in module networkx.convert_matrix), 434
to_pydot() (in module networkx.drawing.nx_pydot), 488
to_scipy_sparse_matrix() (in module networkx.convert_matrix), 432
to_undirected() (DiGraph method), 66
to_undirected() (Graph method), 35
to_undirected() (MultiDiGraph method), 126
to_undirected() (MultiGraph method), 94
to_vertex_cover() (in module networkx.algorithms.bipartite.matching), 152
topological_sort() (in module networkx.algorithms.dag), 247
topological_sort_recursive() (in module networkx.algorithms.dag), 247
transitive_closure() (in module networkx.algorithms.dag), 249
transitivity() (in module networkx.algorithms.cluster), 201
tree_data() (in module networkx.readwrite.json_graph), 463
tree_graph() (in module networkx.readwrite.json_graph), 464
triadic_census() (in module networkx.algorithms.triads), 360
triangles() (in module networkx.algorithms.cluster), 200
trivial_graph() (in module networkx.generators.classic), 376
truncated_cube_graph() (in module networkx.generators.small), 381
truncated_tetrahedron_graph() (in module networkx.generators.small), 381
tutte_graph() (in module networkx.generators.small), 381

U

uniform_random_intersection_graph() (in module networkx.generators.intersection), 405
uniform_sequence() (in module networkx.utils.random_sequence), 497
union() (in module networkx.algorithms.operators.binary), 317
union() (UnionFind method), 496
union_all() (in module networkx.algorithms.operators.all), 320

W

watts_strogatz_graph() (in module networkx.generators.random_graphs), 385
waxman_graph() (in module networkx.generators.geometric), 401
weakly_connected_component_subgraphs() (in module networkx.algorithms.components.weakly_connected), 214
weakly_connected_components() (in module networkx.algorithms.components.weakly_connected), 213
weighted_choice() (in module networkx.utils.random_sequence), 498
weighted_projected_graph() (in module networkx.algorithms.bipartite.projection), 155
wheel_graph() (in module networkx.generators.classic), 376
within_inter_cluster() (in module networkx.algorithms.link_prediction), 308
write_adjlist() (in module networkx.readwrite.adjlist), 438
write_dot() (in module networkx.drawing.nx_agraph), 486
write_dot() (in module networkx.drawing.nx_pydot), 488
write_edgelist() (in module networkx.readwrite.edgelist), 446
write_gexf() (in module networkx.readwrite.gexf), 451
write_gml() (in module networkx.readwrite.gml), 453
write_gpickle() (in module networkx.readwrite.gpickle), 456
write_graph6() (in module networkx.readwrite.graph6), 470
write_graphml() (in module networkx.readwrite.graphml), 459
write_multiline_adjlist() (in module networkx.readwrite multiline_adjlist), 442
write_pajek() (in module networkx.readwrite.pajek), 474
write_shp() (in module networkx.readwrite.shp), 476
write_sparse6() (in module networkx.readwrite.sparse6), 473
write_weighted_edgelist() (in module networkx.readwrite.edgelist), 447
write_yaml() (in module networkx.readwrite.nx_yaml), 467

Z

zipf_rv() (in module networkx.utils.random_sequence), 497
zipf_sequence() (in module networkx.utils.random_sequence), 497