Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

Source code for networkx.classes.digraph

"""Base class for directed graphs."""
#    Copyright (C) 2004-2015 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
from copy import deepcopy
import networkx as nx
from networkx.classes.graph import Graph
from networkx.exception import NetworkXError
import networkx.convert as convert
__author__ = """\n""".join(['Aric Hagberg (hagberg@lanl.gov)',
                            'Pieter Swart (swart@lanl.gov)',
                            'Dan Schult(dschult@colgate.edu)'])

[docs]class DiGraph(Graph): """ Base class for directed graphs. A DiGraph stores nodes and edges with optional data, or attributes. DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not. Nodes can be arbitrary (hashable) Python objects with optional key/value attributes. Edges are represented as links between nodes with optional key/value attributes. Parameters ---------- data : input graph Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs. See Also -------- Graph MultiGraph MultiDiGraph Examples -------- Create an empty graph structure (a "null graph") with no nodes and no edges. >>> G = nx.DiGraph() G can be grown in several ways. **Nodes:** Add one node at a time: >>> G.add_node(1) Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph). >>> G.add_nodes_from([2,3]) >>> G.add_nodes_from(range(100,110)) >>> H=nx.Graph() >>> H.add_path([0,1,2,3,4,5,6,7,8,9]) >>> G.add_nodes_from(H) In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph. >>> G.add_node(H) **Edges:** G can also be grown by adding edges. Add one edge, >>> G.add_edge(1, 2) a list of edges, >>> G.add_edges_from([(1,2),(1,3)]) or a collection of edges, >>> G.add_edges_from(H.edges()) If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist. **Attributes:** Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively. >>> G = nx.DiGraph(day="Friday") >>> G.graph {'day': 'Friday'} Add node attributes using add_node(), add_nodes_from() or G.node >>> G.add_node(1, time='5pm') >>> G.add_nodes_from([3], time='2pm') >>> G.node[1] {'time': '5pm'} >>> G.node[1]['room'] = 714 >>> del G.node[1]['room'] # remove attribute >>> G.nodes(data=True) [(1, {'time': '5pm'}), (3, {'time': '2pm'})] Warning: adding a node to G.node does not add it to the graph. Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge. >>> G.add_edge(1, 2, weight=4.7 ) >>> G.add_edges_from([(3,4),(4,5)], color='red') >>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})]) >>> G[1][2]['weight'] = 4.7 >>> G.edge[1][2]['weight'] = 4 **Shortcuts:** Many common graph features allow python syntax to speed reporting. >>> 1 in G # check if node in graph True >>> [n for n in G if n<3] # iterate through nodes [1, 2] >>> len(G) # number of nodes in graph 5 The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient. >>> for n,nbrsdict in G.adjacency_iter(): ... for nbr,eattr in nbrsdict.items(): ... if 'weight' in eattr: ... (n,nbr,eattr['weight']) (1, 2, 4) (2, 3, 8) >>> G.edges(data='weight') [(1, 2, 4), (2, 3, 8), (3, 4, None), (4, 5, None)] **Reporting:** Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges. For details on these and other miscellaneous methods, see below. **Subclasses (Advanced):** The Graph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency lists keyed by node. The next dict (adjlist) represents the adjacency list and holds edge data keyed by neighbor. The inner dict (edge_attr) represents the edge data and holds edge attribute values keyed by attribute names. Each of these three dicts can be replaced by a user defined dict-like object. In general, the dict-like features should be maintained but extra features can be added. To replace one of the dicts create a new graph class by changing the class(!) variable holding the factory for that dict-like structure. The variable names are node_dict_factory, adjlist_dict_factory and edge_attr_dict_factory. node_dict_factory : function, optional (default: dict) Factory function to be used to create the outer-most dict in the data structure that holds adjacency lists keyed by node. It should require no arguments and return a dict-like object. adjlist_dict_factory : function, optional (default: dict) Factory function to be used to create the adjacency list dict which holds edge data keyed by neighbor. It should require no arguments and return a dict-like object edge_attr_dict_factory : function, optional (default: dict) Factory function to be used to create the edge attribute dict which holds attrbute values keyed by attribute name. It should require no arguments and return a dict-like object. Examples -------- Create a graph object that tracks the order nodes are added. >>> from collections import OrderedDict >>> class OrderedNodeGraph(nx.Graph): ... node_dict_factory=OrderedDict >>> G=OrderedNodeGraph() >>> G.add_nodes_from( (2,1) ) >>> G.nodes() [2, 1] >>> G.add_edges_from( ((2,2), (2,1), (1,1)) ) >>> G.edges() [(2, 1), (2, 2), (1, 1)] Create a graph object that tracks the order nodes are added and for each node track the order that neighbors are added. >>> class OrderedGraph(nx.Graph): ... node_dict_factory = OrderedDict ... adjlist_dict_factory = OrderedDict >>> G = OrderedGraph() >>> G.add_nodes_from( (2,1) ) >>> G.nodes() [2, 1] >>> G.add_edges_from( ((2,2), (2,1), (1,1)) ) >>> G.edges() [(2, 2), (2, 1), (1, 1)] Create a low memory graph class that effectively disallows edge attributes by using a single attribute dict for all edges. This reduces the memory used, but you lose edge attributes. >>> class ThinGraph(nx.Graph): ... all_edge_dict = {'weight': 1} ... def single_edge_dict(self): ... return self.all_edge_dict ... edge_attr_dict_factory = single_edge_dict >>> G = ThinGraph() >>> G.add_edge(2,1) >>> G.edges(data= True) [(1, 2, {'weight': 1})] >>> G.add_edge(2,2) >>> G[2][1] is G[2][2] True """
[docs] def __init__(self, data=None, **attr): """Initialize a graph with edges, name, graph attributes. Parameters ---------- data : input graph Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph. name : string, optional (default='') An optional name for the graph. attr : keyword arguments, optional (default= no attributes) Attributes to add to graph as key=value pairs. See Also -------- convert Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G = nx.Graph(name='my graph') >>> e = [(1,2),(2,3),(3,4)] # list of edges >>> G = nx.Graph(e) Arbitrary graph attribute pairs (key=value) may be assigned >>> G=nx.Graph(e, day="Friday") >>> G.graph {'day': 'Friday'} """ self.node_dict_factory = ndf = self.node_dict_factory self.adjlist_dict_factory = self.adjlist_dict_factory self.edge_attr_dict_factory = self.edge_attr_dict_factory self.graph = {} # dictionary for graph attributes self.node = ndf() # dictionary for node attributes # We store two adjacency lists: # the predecessors of node n are stored in the dict self.pred # the successors of node n are stored in the dict self.succ=self.adj self.adj = ndf() # empty adjacency dictionary self.pred = ndf() # predecessor self.succ = self.adj # successor # attempt to load graph with data if data is not None: convert.to_networkx_graph(data,create_using=self) # load graph attributes (must be after convert) self.graph.update(attr) self.edge=self.adj
[docs] def add_node(self, n, attr_dict=None, **attr): """Add a single node n and update node attributes. Parameters ---------- n : node A node can be any hashable Python object except None. attr_dict : dictionary, optional (default= no attributes) Dictionary of node attributes. Key/value pairs will update existing data associated with the node. attr : keyword arguments, optional Set or change attributes using key=value. See Also -------- add_nodes_from Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_node(1) >>> G.add_node('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_node(K3) >>> G.number_of_nodes() 3 Use keywords set/change node attributes: >>> G.add_node(1,size=10) >>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649)) Notes ----- A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc. On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables. """ # set up attribute dict if attr_dict is None: attr_dict=attr else: try: attr_dict.update(attr) except AttributeError: raise NetworkXError(\ "The attr_dict argument must be a dictionary.") if n not in self.succ: self.succ[n] = self.adjlist_dict_factory() self.pred[n] = self.adjlist_dict_factory() self.node[n] = attr_dict else: # update attr even if node already exists self.node[n].update(attr_dict)
[docs] def add_nodes_from(self, nodes, **attr): """Add multiple nodes. Parameters ---------- nodes : iterable container A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict. attr : keyword arguments, optional (default= no attributes) Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally. See Also -------- add_node Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_nodes_from('Hello') >>> K3 = nx.Graph([(0,1),(1,2),(2,0)]) >>> G.add_nodes_from(K3) >>> sorted(G.nodes(),key=str) [0, 1, 2, 'H', 'e', 'l', 'o'] Use keywords to update specific node attributes for every node. >>> G.add_nodes_from([1,2], size=10) >>> G.add_nodes_from([3,4], weight=0.4) Use (node, attrdict) tuples to update attributes for specific nodes. >>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})]) >>> G.node[1]['size'] 11 >>> H = nx.Graph() >>> H.add_nodes_from(G.nodes(data=True)) >>> H.node[1]['size'] 11 """ for n in nodes: # keep all this inside try/except because # CPython throws TypeError on n not in self.succ, # while pre-2.7.5 ironpython throws on self.succ[n] try: if n not in self.succ: self.succ[n] = self.adjlist_dict_factory() self.pred[n] = self.adjlist_dict_factory() self.node[n] = attr.copy() else: self.node[n].update(attr) except TypeError: nn,ndict = n if nn not in self.succ: self.succ[nn] = self.adjlist_dict_factory() self.pred[nn] = self.adjlist_dict_factory() newdict = attr.copy() newdict.update(ndict) self.node[nn] = newdict else: olddict = self.node[nn] olddict.update(attr) olddict.update(ndict)
[docs] def remove_node(self, n): """Remove node n. Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception. Parameters ---------- n : node A node in the graph Raises ------- NetworkXError If n is not in the graph. See Also -------- remove_nodes_from Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.edges() [(0, 1), (1, 2)] >>> G.remove_node(1) >>> G.edges() [] """ try: nbrs=self.succ[n] del self.node[n] except KeyError: # NetworkXError if n not in self raise NetworkXError("The node %s is not in the digraph."%(n,)) for u in nbrs: del self.pred[u][n] # remove all edges n-u in digraph del self.succ[n] # remove node from succ for u in self.pred[n]: del self.succ[u][n] # remove all edges n-u in digraph del self.pred[n] # remove node from pred
[docs] def remove_nodes_from(self, nbunch): """Remove multiple nodes. Parameters ---------- nodes : iterable container A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored. See Also -------- remove_node Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> e = G.nodes() >>> e [0, 1, 2] >>> G.remove_nodes_from(e) >>> G.nodes() [] """ for n in nbunch: try: succs=self.succ[n] del self.node[n] for u in succs: del self.pred[u][n] # remove all edges n-u in digraph del self.succ[n] # now remove node for u in self.pred[n]: del self.succ[u][n] # remove all edges n-u in digraph del self.pred[n] # now remove node except KeyError: pass # silent failure on remove
[docs] def add_edge(self, u, v, attr_dict=None, **attr): """Add an edge between u and v. The nodes u and v will be automatically added if they are not already in the graph. Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below. Parameters ---------- u,v : nodes Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects. attr_dict : dictionary, optional (default= no attributes) Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge. attr : keyword arguments, optional Edge data (or labels or objects) can be assigned using keyword arguments. See Also -------- add_edges_from : add a collection of edges Notes ----- Adding an edge that already exists updates the edge data. Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to a keyword which by default is 'weight'. Examples -------- The following all add the edge e=(1,2) to graph G: >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> e = (1,2) >>> G.add_edge(1, 2) # explicit two-node form >>> G.add_edge(*e) # single edge as tuple of two nodes >>> G.add_edges_from( [(1,2)] ) # add edges from iterable container Associate data to edges using keywords: >>> G.add_edge(1, 2, weight=3) >>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7) """ # set up attribute dict if attr_dict is None: attr_dict=attr else: try: attr_dict.update(attr) except AttributeError: raise NetworkXError(\ "The attr_dict argument must be a dictionary.") # add nodes if u not in self.succ: self.succ[u]= self.adjlist_dict_factory() self.pred[u]= self.adjlist_dict_factory() self.node[u] = {} if v not in self.succ: self.succ[v]= self.adjlist_dict_factory() self.pred[v]= self.adjlist_dict_factory() self.node[v] = {} # add the edge datadict=self.adj[u].get(v,self.edge_attr_dict_factory()) datadict.update(attr_dict) self.succ[u][v]=datadict self.pred[v][u]=datadict
[docs] def add_edges_from(self, ebunch, attr_dict=None, **attr): """Add all the edges in ebunch. Parameters ---------- ebunch : container of edges Each edge given in the container will be added to the graph. The edges must be given as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing edge data. attr_dict : dictionary, optional (default= no attributes) Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge. attr : keyword arguments, optional Edge data (or labels or objects) can be assigned using keyword arguments. See Also -------- add_edge : add a single edge add_weighted_edges_from : convenient way to add weighted edges Notes ----- Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added. Edge attributes specified in edges take precedence over attributes specified generally. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples >>> e = zip(range(0,3),range(1,4)) >>> G.add_edges_from(e) # Add the path graph 0-1-2-3 Associate data to edges >>> G.add_edges_from([(1,2),(2,3)], weight=3) >>> G.add_edges_from([(3,4),(1,4)], label='WN2898') """ # set up attribute dict if attr_dict is None: attr_dict=attr else: try: attr_dict.update(attr) except AttributeError: raise NetworkXError(\ "The attr_dict argument must be a dict.") # process ebunch for e in ebunch: ne = len(e) if ne==3: u,v,dd = e assert hasattr(dd,"update") elif ne==2: u,v = e dd = {} else: raise NetworkXError(\ "Edge tuple %s must be a 2-tuple or 3-tuple."%(e,)) if u not in self.succ: self.succ[u] = self.adjlist_dict_factory() self.pred[u] = self.adjlist_dict_factory() self.node[u] = {} if v not in self.succ: self.succ[v] = self.adjlist_dict_factory() self.pred[v] = self.adjlist_dict_factory() self.node[v] = {} datadict=self.adj[u].get(v,self.edge_attr_dict_factory()) datadict.update(attr_dict) datadict.update(dd) self.succ[u][v] = datadict self.pred[v][u] = datadict
[docs] def remove_edge(self, u, v): """Remove the edge between u and v. Parameters ---------- u,v: nodes Remove the edge between nodes u and v. Raises ------ NetworkXError If there is not an edge between u and v. See Also -------- remove_edges_from : remove a collection of edges Examples -------- >>> G = nx.Graph() # or DiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.remove_edge(0,1) >>> e = (1,2) >>> G.remove_edge(*e) # unpacks e from an edge tuple >>> e = (2,3,{'weight':7}) # an edge with attribute data >>> G.remove_edge(*e[:2]) # select first part of edge tuple """ try: del self.succ[u][v] del self.pred[v][u] except KeyError: raise NetworkXError("The edge %s-%s not in graph."%(u,v))
[docs] def remove_edges_from(self, ebunch): """Remove all edges specified in ebunch. Parameters ---------- ebunch: list or container of edge tuples Each edge given in the list or container will be removed from the graph. The edges can be: - 2-tuples (u,v) edge between u and v. - 3-tuples (u,v,k) where k is ignored. See Also -------- remove_edge : remove a single edge Notes ----- Will fail silently if an edge in ebunch is not in the graph. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> ebunch=[(1,2),(2,3)] >>> G.remove_edges_from(ebunch) """ for e in ebunch: (u,v)=e[:2] # ignore edge data if u in self.succ and v in self.succ[u]: del self.succ[u][v] del self.pred[v][u]
def has_successor(self, u, v): """Return True if node u has successor v. This is true if graph has the edge u->v. """ return (u in self.succ and v in self.succ[u]) def has_predecessor(self, u, v): """Return True if node u has predecessor v. This is true if graph has the edge u<-v. """ return (u in self.pred and v in self.pred[u])
[docs] def successors_iter(self,n): """Return an iterator over successor nodes of n. neighbors_iter() and successors_iter() are the same. """ try: return iter(self.succ[n]) except KeyError: raise NetworkXError("The node %s is not in the digraph."%(n,))
[docs] def predecessors_iter(self,n): """Return an iterator over predecessor nodes of n.""" try: return iter(self.pred[n]) except KeyError: raise NetworkXError("The node %s is not in the digraph."%(n,))
[docs] def successors(self, n): """Return a list of successor nodes of n. neighbors() and successors() are the same function. """ return list(self.successors_iter(n))
[docs] def predecessors(self, n): """Return a list of predecessor nodes of n.""" return list(self.predecessors_iter(n)) # digraph definitions
neighbors = successors neighbors_iter = successors_iter
[docs] def edges_iter(self, nbunch=None, data=False, default=None): """Return an iterator over the edges. Edges are returned as tuples with optional data in the order (node, neighbor, data). Parameters ---------- nbunch : iterable container, optional (default= all nodes) A container of nodes. The container will be iterated through once. data : string or bool, optional (default=False) The edge attribute returned in 3-tuple (u,v,ddict[data]). If True, return edge attribute dict in 3-tuple (u,v,ddict). If False, return 2-tuple (u,v). default : value, optional (default=None) Value used for edges that dont have the requested attribute. Only relevant if data is not True or False. Returns ------- edge_iter : iterator An iterator of (u,v) or (u,v,d) tuples of edges. See Also -------- edges : return a list of edges Notes ----- Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges. Examples -------- >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> G.add_path([0,1,2]) >>> G.add_edge(2,3,weight=5) >>> [e for e in G.edges_iter()] [(0, 1), (1, 2), (2, 3)] >>> list(G.edges_iter(data=True)) # default data is {} (empty dict) [(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})] >>> list(G.edges_iter(data='weight', default=1)) [(0, 1, 1), (1, 2, 1), (2, 3, 5)] >>> list(G.edges_iter([0,2])) [(0, 1), (2, 3)] >>> list(G.edges_iter(0)) [(0, 1)] """ if nbunch is None: nodes_nbrs=self.adj.items() else: nodes_nbrs=((n,self.adj[n]) for n in self.nbunch_iter(nbunch)) if data is True: for n,nbrs in nodes_nbrs: for nbr,ddict in nbrs.items(): yield (n,nbr,ddict) elif data is not False: for n,nbrs in nodes_nbrs: for nbr,ddict in nbrs.items(): d=ddict[data] if data in ddict else default yield (n,nbr,d) else: for n,nbrs in nodes_nbrs: for nbr in nbrs: yield (n,nbr) # alias out_edges to edges
out_edges_iter=edges_iter out_edges=Graph.edges
[docs] def in_edges_iter(self, nbunch=None, data=False): """Return an iterator over the incoming edges. Parameters ---------- nbunch : iterable container, optional (default= all nodes) A container of nodes. The container will be iterated through once. data : bool, optional (default=False) If True, return edge attribute dict in 3-tuple (u,v,data). Returns ------- in_edge_iter : iterator An iterator of (u,v) or (u,v,d) tuples of incoming edges. See Also -------- edges_iter : return an iterator of edges """ if nbunch is None: nodes_nbrs=self.pred.items() else: nodes_nbrs=((n,self.pred[n]) for n in self.nbunch_iter(nbunch)) if data: for n,nbrs in nodes_nbrs: for nbr,data in nbrs.items(): yield (nbr,n,data) else: for n,nbrs in nodes_nbrs: for nbr in nbrs: yield (nbr,n)
[docs] def in_edges(self, nbunch=None, data=False): """Return a list of the incoming edges. See Also -------- edges : return a list of edges """ return list(self.in_edges_iter(nbunch, data))
[docs] def degree_iter(self, nbunch=None, weight=None): """Return an iterator for (node, degree). The node degree is the number of edges adjacent to the node. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. weight : string or None, optional (default=None) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- nd_iter : an iterator The iterator returns two-tuples of (node, degree). See Also -------- degree, in_degree, out_degree, in_degree_iter, out_degree_iter Examples -------- >>> G = nx.DiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> list(G.degree_iter(0)) # node 0 with degree 1 [(0, 1)] >>> list(G.degree_iter([0,1])) [(0, 1), (1, 2)] """ if nbunch is None: nodes_nbrs=( (n,succs,self.pred[n]) for n,succs in self.succ.items()) else: nodes_nbrs=( (n,self.succ[n],self.pred[n]) for n in self.nbunch_iter(nbunch)) if weight is None: for n,succ,pred in nodes_nbrs: yield (n,len(succ)+len(pred)) else: # edge weighted graph - degree is sum of edge weights for n,succ,pred in nodes_nbrs: yield (n, sum((succ[nbr].get(weight,1) for nbr in succ))+ sum((pred[nbr].get(weight,1) for nbr in pred)))
[docs] def in_degree_iter(self, nbunch=None, weight=None): """Return an iterator for (node, in-degree). The node in-degree is the number of edges pointing in to the node. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. weight : string or None, optional (default=None) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- nd_iter : an iterator The iterator returns two-tuples of (node, in-degree). See Also -------- degree, in_degree, out_degree, out_degree_iter Examples -------- >>> G = nx.DiGraph() >>> G.add_path([0,1,2,3]) >>> list(G.in_degree_iter(0)) # node 0 with degree 0 [(0, 0)] >>> list(G.in_degree_iter([0,1])) [(0, 0), (1, 1)] """ if nbunch is None: nodes_nbrs=self.pred.items() else: nodes_nbrs=((n,self.pred[n]) for n in self.nbunch_iter(nbunch)) if weight is None: for n,nbrs in nodes_nbrs: yield (n,len(nbrs)) else: # edge weighted graph - degree is sum of edge weights for n,nbrs in nodes_nbrs: yield (n, sum(data.get(weight,1) for data in nbrs.values()))
[docs] def out_degree_iter(self, nbunch=None, weight=None): """Return an iterator for (node, out-degree). The node out-degree is the number of edges pointing out of the node. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. weight : string or None, optional (default=None) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- nd_iter : an iterator The iterator returns two-tuples of (node, out-degree). See Also -------- degree, in_degree, out_degree, in_degree_iter Examples -------- >>> G = nx.DiGraph() >>> G.add_path([0,1,2,3]) >>> list(G.out_degree_iter(0)) # node 0 with degree 1 [(0, 1)] >>> list(G.out_degree_iter([0,1])) [(0, 1), (1, 1)] """ if nbunch is None: nodes_nbrs=self.succ.items() else: nodes_nbrs=((n,self.succ[n]) for n in self.nbunch_iter(nbunch)) if weight is None: for n,nbrs in nodes_nbrs: yield (n,len(nbrs)) else: # edge weighted graph - degree is sum of edge weights for n,nbrs in nodes_nbrs: yield (n, sum(data.get(weight,1) for data in nbrs.values()))
[docs] def in_degree(self, nbunch=None, weight=None): """Return the in-degree of a node or nodes. The node in-degree is the number of edges pointing in to the node. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. weight : string or None, optional (default=None) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- nd : dictionary, or number A dictionary with nodes as keys and in-degree as values or a number if a single node is specified. See Also -------- degree, out_degree, in_degree_iter Examples -------- >>> G = nx.DiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> G.in_degree(0) 0 >>> G.in_degree([0,1]) {0: 0, 1: 1} >>> list(G.in_degree([0,1]).values()) [0, 1] """ if nbunch in self: # return a single node return next(self.in_degree_iter(nbunch,weight))[1] else: # return a dict return dict(self.in_degree_iter(nbunch,weight))
[docs] def out_degree(self, nbunch=None, weight=None): """Return the out-degree of a node or nodes. The node out-degree is the number of edges pointing out of the node. Parameters ---------- nbunch : iterable container, optional (default=all nodes) A container of nodes. The container will be iterated through once. weight : string or None, optional (default=None) The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1. The degree is the sum of the edge weights adjacent to the node. Returns ------- nd : dictionary, or number A dictionary with nodes as keys and out-degree as values or a number if a single node is specified. Examples -------- >>> G = nx.DiGraph() # or MultiDiGraph >>> G.add_path([0,1,2,3]) >>> G.out_degree(0) 1 >>> G.out_degree([0,1]) {0: 1, 1: 1} >>> list(G.out_degree([0,1]).values()) [1, 1] """ if nbunch in self: # return a single node return next(self.out_degree_iter(nbunch,weight))[1] else: # return a dict return dict(self.out_degree_iter(nbunch,weight))
[docs] def clear(self): """Remove all nodes and edges from the graph. This also removes the name, and all graph, node, and edge attributes. Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> G.clear() >>> G.nodes() [] >>> G.edges() [] """ self.succ.clear() self.pred.clear() self.node.clear() self.graph.clear()
def is_multigraph(self): """Return True if graph is a multigraph, False otherwise.""" return False def is_directed(self): """Return True if graph is directed, False otherwise.""" return True
[docs] def to_directed(self): """Return a directed copy of the graph. Returns ------- G : DiGraph A deepcopy of the graph. Notes ----- This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. Examples -------- >>> G = nx.Graph() # or MultiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1), (1, 0)] If already directed, return a (deep) copy >>> G = nx.DiGraph() # or MultiDiGraph, etc >>> G.add_path([0,1]) >>> H = G.to_directed() >>> H.edges() [(0, 1)] """ return deepcopy(self)
[docs] def to_undirected(self, reciprocal=False): """Return an undirected representation of the digraph. Parameters ---------- reciprocal : bool (optional) If True only keep edges that appear in both directions in the original digraph. Returns ------- G : Graph An undirected graph with the same name and nodes and with edge (u,v,data) if either (u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired. Notes ----- If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add_edge(). This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references. This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data. See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html. Warning: If you have subclassed DiGraph to use dict-like objects in the data structure, those changes do not transfer to the Graph created by this method. """ H=Graph() H.name=self.name H.add_nodes_from(self) if reciprocal is True: H.add_edges_from( (u,v,deepcopy(d)) for u,nbrs in self.adjacency_iter() for v,d in nbrs.items() if v in self.pred[u]) else: H.add_edges_from( (u,v,deepcopy(d)) for u,nbrs in self.adjacency_iter() for v,d in nbrs.items() ) H.graph=deepcopy(self.graph) H.node=deepcopy(self.node) return H
[docs] def reverse(self, copy=True): """Return the reverse of the graph. The reverse is a graph with the same nodes and edges but with the directions of the edges reversed. Parameters ---------- copy : bool optional (default=True) If True, return a new DiGraph holding the reversed edges. If False, reverse the reverse graph is created using the original graph (this changes the original graph). """ if copy: H = self.__class__(name="Reverse of (%s)"%self.name) H.add_nodes_from(self) H.add_edges_from( (v,u,deepcopy(d)) for u,v,d in self.edges(data=True) ) H.graph=deepcopy(self.graph) H.node=deepcopy(self.node) else: self.pred,self.succ=self.succ,self.pred self.adj=self.succ H=self return H
[docs] def subgraph(self, nbunch): """Return the subgraph induced on nodes in nbunch. The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes. Parameters ---------- nbunch : list, iterable A container of nodes which will be iterated through once. Returns ------- G : Graph A subgraph of the graph with the same edge attributes. Notes ----- The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will. To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch)) If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy() For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([ n in G if n not in set(nbunch)]) Examples -------- >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2,3]) >>> H = G.subgraph([0,1,2]) >>> H.edges() [(0, 1), (1, 2)] """ bunch = self.nbunch_iter(nbunch) # create new graph and copy subgraph into it H = self.__class__() # copy node and attribute dictionaries for n in bunch: H.node[n]=self.node[n] # namespace shortcuts for speed H_succ=H.succ H_pred=H.pred self_succ=self.succ # add nodes for n in H: H_succ[n]=H.adjlist_dict_factory() H_pred[n]=H.adjlist_dict_factory() # add edges for u in H_succ: Hnbrs=H_succ[u] for v,datadict in self_succ[u].items(): if v in H_succ: # add both representations of edge: u-v and v-u Hnbrs[v]=datadict H_pred[v][u]=datadict H.graph=self.graph return H