Erdos Renyi

Create an G{n,m} random graph with n nodes and m edges and report some properties.

This graph is sometimes called the Erdős-Rényi graph but is different from G{n,p} or binomial_graph which is also sometimes called the Erdős-Rényi graph.

../../_images/sphx_glr_plot_erdos_renyi_001.png

Out:

node degree clustering
0 5 0.400000
1 4 0.666667
2 2 0.000000
3 2 1.000000
4 5 0.500000
5 4 0.500000
6 5 0.600000
7 5 0.400000
8 2 1.000000
9 6 0.333333
#/home/travis/build/networkx/networkx/examples/graph/plot_erdos_renyi.py
# GMT Wed Sep 19 18:49:36 2018
#
0 9 2 4 6 7
1 9 4 5 6
2 5
3 9 7
4 5 6 7
5 6
6 9
7 9 8
8 9
9

# Author: Aric Hagberg (hagberg@lanl.gov)

#    Copyright (C) 2004-2018 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.

import sys

import matplotlib.pyplot as plt
from networkx import nx

n = 10  # 10 nodes
m = 20  # 20 edges

G = nx.gnm_random_graph(n, m)

# some properties
print("node degree clustering")
for v in nx.nodes(G):
    print('%s %d %f' % (v, nx.degree(G, v), nx.clustering(G, v)))

# print the adjacency list to terminal
try:
    nx.write_adjlist(G, sys.stdout)
except TypeError:  # Python 3.x
    nx.write_adjlist(G, sys.stdout.buffer)

nx.draw(G)
plt.show()

Total running time of the script: ( 0 minutes 0.048 seconds)

Gallery generated by Sphinx-Gallery